
The Internet of Things (IoT) is a paradigm wherein
ubiquitous, context-aware devices equipped to identify,
sense, and process data communicate over the Internet
to accomplish some intended objective(s). The Internet
of Things Global Standards Initiative (IoT-GSI) defines
IoT as: 

A global infrastructure for the information society,
enabling advanced services by interconnecting (physical
and virtual) things based on existing and evolving inter-
operable information and communication technologies.1

Several technologies that have evolved independently
over the last two decades (e.g., sensor networks, RFIDs,
microchips, intelligent agents, the Internet, mobile
computing) are now converging to enable the IoT
paradigm. For example, it used to be the case that
devices equipped with RFID chips could only be
employed locally due to their limited near-field com-
munication abilities. With advances in communication
and Internet technologies, the same devices have now
expanded their geographic reach globally. The develop-
ment and adoption of these technologies have been so
rapid that the number of active IoT devices themselves
are estimated to reach 50 billion by 2020, up from an
estimated 25 billion in 2015.2 According to one estimate,3

40% of all data generated by 2020 will come from inter-
connected sensors and devices. Thanks to IoT and other
related technologies, massive quantities of both struc-
tured and unstructured data are being generated on a
continuous basis at a phenomenal rate, leading to a big
data revolution, which in turn is providing opportuni-
ties for big data analytics.

The increasing business and social impact of the IoT
paradigm is prompting researchers and practitioners
to bring together and integrate more and more “things,”
resulting in a vast network of autonomous, self-
organizing, and intelligent devices.4 Consequently,
the IoT holds the promise of creating a global network,
supporting ubiquitous computing and context aware-
ness among devices.5 Ubiquitous computing and con-
text awareness have become critical requirements of
ambient intelligence, one of the key promises of the

IoT.6 The IoT helps embed technologies into everyday
products/devices, such as audio/video receivers, wrist-
watches, smoke detectors, and home appliances, which
not only enables them to communicate online, but also
to receive and process data and information from other
devices in a dynamic fashion, in real time. Thus, the
real revolution of IoT goes beyond embedding a sensor
and sending signals over the Internet to developing a
360-degree context awareness by analyzing data from
multiple sensors or sources using complex advanced
algorithms, in real time, for improved decision making. 

For example, RFID technologies previously enabled
organizations to track the location of products through
the supply chain at various destination points, such
as the warehouse or the retail outlet. With IoT, though,
products can now be tracked while in motion and in
real time, resulting in dynamic tracking and improved
inventory management. As another example, with
traditional RFID technologies, a machine stationed at
a location could be monitored through sensors and a
potential maintenance issue communicated to manu-
facturers to preempt failures (e.g., elevator manufactur-
ers getting notification alerts on impending failures so
that preventive maintenance can be scheduled, thus
improving customer safety). With the evolution to IoT,
this advanced monitoring feature can now be extended
to machines that are mobile, such as engines in trucks,
ships, and planes. Such intelligent behavior requires IoT
devices to be aware of their context or surroundings.

CONTEXT AWARENESS

The IoT literature provides many definitions of context
awareness.7 For the purpose of this article, we define
context awareness as the information necessary and
sufficient to perform the intended function of the device
effectively and efficiently. Typically, but not always, the
context can be ascertained comprehensively by answers
to some or all of what we like to call “the four W’s”:
Where, When, Who, and What. A simple IoT device
with limited functionality may only need to answer
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one or two W’s, while a more complex IoT device may
need answers to all four, and perhaps even to additional
questions such as How, Why, Which, How Much, and
so on. See Table 1 for some examples of contextual data
needed for the parameters defining the context aware-
ness of an IoT device.

AN ANALYTICS FRAMEWORK FOR CONTEXT AWARENESS

Figure 1 illustrates our proposed analytics framework
for a typical IoT device. As shown in Figure 1a, within
one’s environment of interest, there is typically a net-
work of IoT and non-IoT devices interacting with each
other over the Internet to accomplish certain objective(s)
for an entity (person or organization). Each IoT device
has three main components: a set of sensors, a context
awareness engine, and a solution engine (see Figure 1b). 

Through the set of sensors, the necessary data is col-
lected. There are typically many different types of
sensors that generate data for a specific application,
ranging from a simple thermometer for measuring the
room temperature to a radio telescope for sensing radio
waves from faraway galaxies. Sensors can be designed
to capture data for different environmental characteris-
tics, such as latitude and longitude, time, temperature
and other weather-related characteristics, the presence
of objects, motion detection, speed, and so on. These
sensors provide data to answer questions for the four
W’s (see Table 1). The context awareness engine then
analyzes the data to model the context. Taking into
account the objective of the application, the solution
engine uses the context information and determines
the best possible solution, which could be some action.
The action might simply be a notification to an appro-
priate person or device or it could be a corrective action
that alters the state of some object of interest in the
environment.

The context awareness engine of the IoT device has two
main components — the data representation engine and
the context modeling and analytics engine (see Figure
1c). The data representation engine acquires the sensor
data from various heterogeneous sources and represents
and stores that data in the appropriate formats. The
context analytics and modeling engine combines data in
heterogeneous formats and applies suitable algorithms
to model the context. The output of the context aware-
ness engine is the context, which is used by the solution
engine. The context is also stored within the context
awareness engine using the data representation engine,
to enable dynamic update of the context and further
refinement of context if needed. 

As shown in Figure 1c, there is bidirectional communi-
cation between the data representation engine and the
context analytics and modeling engine, because the way
the data is represented influences the modeling algo-
rithms and vice versa. Depending on the nature of the
input data, it can be stored in a variety of different for-
mats within the data representation engine, such as
the standard two-dimensional relational table, as a class
of objects with properties and methods, or as one of
the NoSQL database formats (key-value pairs, column
family database, graph database, etc.). For instance, for
high-velocity, single-column data, the key-value pair
format would be the most appropriate. For low-volume,
multi-attribute, structured data with no built-in meth-
ods, the tabular format would be the most appropriate.

Parameter Description Examples of Data 
Where Location of events The latitude, longitude, and altitude of the IoT device 
When Time of events The timestamp of all the signals/data received by the IoT device 
Who  Person(s) or object(s) of 

interest associated with  
the events 

Identification data for the object or person (e.g., biometric 
readings for a person or the IP address of another IoT device 
in network) 

What  Various measures of 
interest besides location, 
time, and objects 

Temperature, pressure, speed, level, weight, duration, sentiment, 
demographics, distance 

Table 1 — Parameters defining context.

Modeling a 360-degree view of the context
is like solving a jigsaw puzzle, where each
puzzle piece comes from a different source
in the form of data. 
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For low-volume, multi-column, structured data with
built-in methods, the object-oriented format would be
the most appropriate.

Modeling a 360-degree view of the context is like
solving a jigsaw puzzle, where each puzzle piece
comes from a different source in the form of data. The
completed puzzle may look completely different from
any of the individual pieces. This puzzle solving hap-
pens within the context analytics and modeling engine
by using the data collected to answer the four W’s (in
Table 1). Depending on the nature of the data and the
application, it may employ a variety of analytics tech-
niques, ranging from simple arithmetic operations to
complex pattern recognition (facial, voice, image, or
text). Other techniques might include data mining
methods such as classification, clustering, association
rule mining, and so forth. This context modeling is
usually performed in real time, since the actions taken
by an IoT device are typically time-sensitive.

To illustrate our proposed analytics framework for con-
text awareness, let’s look at a practical example of an
IoT system that helps law enforcement agents keep the
roads free of drunk drivers.

KEEPING IMPAIRED DRIVERS OFF THE ROAD: 
A PRACTICAL EXAMPLE

A breath-alcohol analyzer (BAA) is an IoT device used
to monitor the breath-alcohol level of DUI offenders
during their probationary period. DUI offenders are
required to install a BAA device in their vehicle and
provide their breath sample periodically while driving.
The BAA analyzes the breath sample for its alcohol
level, and if the level exceeds the legal limit, the device
alerts the appropriate law enforcement agency. How-
ever, this approach is not foolproof. Drivers may poten-
tially cheat the system by having a sober person provide
the breath sample on their behalf, or they might adopt
measures to manipulate their breath sample using some
suppressants. Furthermore, DUI offenders may be risky
drivers even while within the legal alcohol level. 

To better assess the riskiness of an offender’s driving,
a more comprehensive context awareness is needed, one
that builds from multiple sources of data. For example,
in addition to breath-alcohol level, the smoothness of
the drive itself can be assessed using appropriate sen-
sors, such as a telematics device and the vehicle’s curb
camera. Thus, the functionality of the BAA as an IoT
device can be enhanced by enabling it to gather data
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Figure 1a: The schema of a network of IoT devices.

 Figure 1b: The schema of an IoT device.

Figure 1c: The schema of the context awareness engine.

Environment 

Non-IoT 
Device 

IoT 
Device 

IoT 
Device 

IoT 
Device 

Non-IoT 
Device 

IoT 
Device 

IoT Device 

Context 
Awareness 

Engine 

The Solution 
Engine 

Action 

Data Sensors 
Context 

Signals 

Objective 

Context Awareness Engine  

Data Representation 
Engine 

Context Analytics and 
Modeling Engine 

Data 
Where 
When 
Who 
What 

Context 

Figure 1 — An analytics framework for context awareness of an IoT device.
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from multiple sources, thus developing a more compre-
hensive context by applying analytics on these multiple
sources of data. Figure 2 shows the operational schema
of an environment in which the BAA interacts with
other IoT and non-IoT devices.

The BAA installed in the DUI offender’s vehicle receives
input from the driver (biometric readings, breath sam-
ple, voice sample), a telematics device (speed, time-
stamp), a curb camera (distance from curb, timestamp),
satellite (longitude and latitude), and the law enforce-
ment agency (voice sample and other biometric patterns
of the offender). In addition to these external sources,
the BAA itself may contain some internal sensors that
provide data for the context awareness engine. Table 2
shows the details of the data collected for the BAA to
answer the four W’s. 

Data Representation for the BAA

Since the data sources for the BAA are quite heteroge-
neous, the appropriate data representation formats also
differ, depending on the data characteristics. In our
example, the telematics data and the curb camera data
are considered high-velocity, since we are collecting the
data every second. It is best to represent this data as
key-value pairs. For the telematics device data, the key
will be the timestamp, and the value will be the vehicle
speed. For the curb camera data, the key will again be
the timestamp, and the value will be distance from the
curb. The offender data from the law enforcement
agency is very low-volume, multi-attribute with no 

in-built methods, and therefore a tabular data format
is the most appropriate for this data. The data for each
trip and for each breath analysis is also low-volume,
multi-attribute, structured data with in-built methods,
and thus the most appropriate format would be an
object-oriented class. 

Figure 3 shows the data representation for each type of
data discussed above. For the class diagram, we identify
two classes: Trip and BreathTest. The Trip class cap-
tures data for each trip, such as the date, time, driver’s
biometric reading, and origin and destination coordi-
nates. Its methods confirm the identity of the offender.
The BreathTest class captures the results of the breath
test multiple times for each trip. Its methods are
designed to confirm the validity of tests and whether
there was a violation. The data from the telematics
device and the curb camera is shown as key-value pairs.
This data will be used by the context modeler to deter-
mine if the offender is driving in a jerky manner or
weaving within his or her lane. 

Environment 

Telematics 
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Curb 
Camera 

Law Enforcement 
Agency 

Breath-
Alcohol 

Analyzer 

Satellite 

Driver 

Figure 2 — The schema of the breath analyzer IoT device 
and its environment.

Parameter Description Example of Data Source 
Where Location The longitude and latitude of the vehicle Satellite 

When Time The timestamp of the breath analysis 
Timestamp for speed 
Timestamp for curb distance 
Time of request for breath 
Time of breath input 

BAA 
Telematics device 
Curb camera 
BAA 
BAA 

Who  Person(s) 
or object(s) 
of interest 

Offender’s identity (through some 
biometric sensing) 

Driver 

What  Measures 
of interest 

Alcohol level in the breath 
Speed of vehicle 
Curb distance 
Biometric data for the offender 

BAA 
Telematics device 
Curb camera 
Law enforcement agency 

Table 2 — Parameters defining context for a breath analyzer.
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Context Analytics and Modeling for the BAA

The telematics data on vehicle speed, which is captured
every second, is used to evaluate whether the drive is
smooth or swervy. An algorithm calculates the accelera-
tion and deceleration every second and determines if
the variations are above normal in level and frequency.
If they are, then the BAA device becomes aware that the
drive is abnormal. Similarly, another algorithm calcu-
lates differences in the distance from the curb every sec-
ond. If these differences are beyond a certain threshold
and in both directions, and sustained over a period
time, then the BAA device becomes aware that the
offender is swerving. 

When the BAA becomes context aware of an abnormal
drive, it may send a notification to the law enforce-
ment agency and a new request for a breath test may
be triggered to the driver. The driver must provide
a breath sample within a predetermined duration of
time; if the gap between the request and the receipt
of the breath sample exceeds that duration, the
RequestInputGapOkay() method (see Figure 3) sends an
alert to law enforcement. If the breath-alcohol level is
above a pre-set threshold, the AlcoholLevelAbnormal()
method sends another alert. While providing the breath
sample, the offender is also required to make a sound.

The sound characteristics are then compared with the
offender’s voice sample that the law enforcement
agency has on file. If the voice does not match, the
method DoVoiceBreathMatch() sends an alert to the
agency. This check is used to ensure that the offender
is not using another person’s breath to circumvent the
test. If he or she is, the law enforcement agency will
receive this notification and charge the offender with
the violation. If the voice matches, then no alert is sent.

POTENTIAL CHALLENGES 

There are a few challenges associated with our frame-
work. As our example shows, the need for a compre-
hensive context requires heterogeneous data collection
and storage. Further, the analytics is being performed
in real time on disparate data representations. Multi-
disciplinary skills will be needed in order to develop
and deploy context-aware engines for IoT-driven
applications.

CONCLUSION

The analytics framework we have proposed in this arti-
cle is designed to handle multiple and heterogeneous
sources of data to develop accurate models for 360-
degree context awareness for IoT-based applications. By
capturing and analyzing the details of the context, the
IoT device enhances context awareness, which in turn
leads to improvements in the operational effectiveness
of an IoT-based application. For instance, the BAA
example illustrates how law enforcement agencies could
benefit as enhanced context awareness provides more
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Figure 3 — Data representation for BAA data.

Multidisciplinary skills will be needed in order
to develop and deploy context-aware engines
for IoT-driven applications.
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accurate and comprehensive monitoring of DUI offend-
ers on probation. This, in turn, reduces the time, cost,
and effort spent to achieve the objective of keeping
unsafe drivers off the road. We believe application of
the proposed framework will result in a much richer
suite of data points for many IoT devices, thereby pro-
viding more value to businesses and other organiza-
tions in their decision making. 
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