
Assessing the Predictive Utility of Logistic Regression,
Classification and Regression Tree, Chi-Squared
Automatic Interaction Detection, and Neural Network
Models in Predicting Inmate Misconduct

Fawn T. Ngo & Ramakrishna Govindu &

Anurag Agarwal

Received: 3 February 2014 /Accepted: 7 May 2014 /
Published online: 23 May 2014
# Southern Criminal Justice Association 2014

Abstract This study assesses the relative utility of a traditional regression approach -
logistic regression (LR) - and three classification techniques - classification and
regression tree (CART), chi-squared automatic interaction detection (CHAID), and
multi-layer perceptron neural network (MLPNN)—in predicting inmate misconduct.
The four models were tested using a sample of inmates held in state and federal prisons
and predictors derived from the importation model on inmate adaptation. Multi-
validation procedure and multiple evaluation indicators were used to evaluate and
report the predictive accuracy. The overall accuracy of the four models varied between
0.60 and 0.66 with an overall AUC range of 0.60–0.70. The LR and MLPNN methods
performed significantly better than the CART and CHAID techniques at identifying
misbehaving inmates and the CHAID method outperformed the CART approach in
classifying defied inmates. The MLPNNmethod performed significantly better than the
LR technique in predicting inmate misconduct among the training samples.

Keywords Actuarial risk assessment techniques . Comparative statistical techniques .

Logistic regression .Classification and regression tree .Chi-squared automatic interaction
detection . Neural networks . Importationmodel . Inmatemisconduct

Introduction

Developing effective models to predict future risks has been a challenging task
confronting criminal justice researchers and practitioners. Generally, there are two
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types of risk assessment instruments employed in criminal justice settings: those based
on clinical judgment and those based on actuarial practices (Gottfredson and
Gottfredson, 1986). Clinical methods, also known as first-generation assessments or
subjective assessments (Bonta, 1996), involves interviews with offenders using unstan-
dardized questions or checkoff lists formulated by professionals to gauge behavioral
indicators. 1 Actuarial techniques, also known as second-generation assessments or
statistically-based instruments, are grounded in theory and research and factors identi-
fied from empirical studies to be related to criminal behavior are employed to develop a
predictive model (Bonta, 1996).

Compared to clinical methods, actuarial risk assessment instruments have been
demonstrated to be more accurate in focasting future risks (Dawes, Faust, and Meehl,
1989; Gottfredson and Moriarty, 2006; Hanson and Morton-Bourgon, 2007; 2009;
Hilton, Harris, and Rice, 2006; Jones, 1996; BUT see Singh, Grann, and Fazel, 2011).
However, actuarial risk assessment methods are not without limitations. In particular,
critics of these methods have contended that since they are generally based on gener-
alized linear models (i.e., linear or logistic regression), they tend to assume a “one size
fits all” approach, with no individual considerations. This assumption essentially ignores
the possibility that different factors might apply to different subgroups of individuals
when predicting risks (Steadman et al., 2000). Critics of actuarial methods have also
noted the loss of accuracy resulting from applying the actuarial rules to an offender
population different from the population used to develop the rules—a sampling problem
common to any statistical analysis (Gendreau, Goggin, and Smith, 2002; Glover et al.,
2002; Gottfredson and Gottfredson, 1986; Grove andMeehl, 1996) - as well as although
the overall accuracy rates of these instruments represent an improvement over chance,
the magnitude of the improvement is small and not deemed to be clinically significant
(Menzies et al., 1994; Steadman et al., 2000). Recently, critics of conventional actuarial
techniques, particularly logistic regression, have demonstrated that other approaches
such as machine learning methods are superior in forecasting future risks especially in
situations where the best decision boundary is complex (Berk and Bleich, 2013).

To date, researchers and scholars have attempted to assess different statistical
methods and approaches for risk assessment instruments to identify the best method
for the purpose of testing and developing new instruments. Within the arena of criminal
justice, prior studies have compared logistic regression, classification tree methods, and
neural networks models for their relative accuracy in predicting violence and criminal
recidivism. In this paper, we seek to contribute to the scholarship on the identification
of the most effective statistical methods to use when predicting future risks by assessing
the relative predictive utility of logistic regression, classification and regression tree
(CART), chi-squared automatic interaction detection (CHAID), and neural networks in
predicting an outcome that has not been examined by previous scholars and researchers
- inmate misconduct. To the best of our knowledge, our paper is the first to compare

1 Clinical approaches to risk assessment can be further dichotomized into unstructured and structured clinical
judgment. With unstructured clinical judgment, a clinician relies solely on his/her professional experience for
accuracy in predicting an individual’s risk. With structured clinical judgment, the clinician utilizes empirically-
based risk factors to guide his/her prediction of an individual’s risk (for further descriptions of these two types
of risk assessment methods, see Aegisdottir et al., 2006; Hanson, 2005; Singh and Fazel, 2010; Singh, Grann,
and Fazel, 2011).
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these four techniques together. We also draw from one of the leading theoretical
perspectives on inmate misconduct, the importation model, for our predictor variables.

The remainder of our paper is organized as follows. First, we provide a brief
description of logistic regression, CART, CHAID, and neural networks. Next, we
present a review of the literature on prior comparison studies involving the above
statistical techniques. We also discuss the importation model and describe our methods
and data. Finally, we discuss our findings and their implications.

Logistic Regression, Cart, Chaid, and Neural Networks

Logistic Regression

Logistic regression (LR) is a statistical technique for classification based on the logistic
function. LR involves the estimation of the probability of a binary event occurring (e.g.,
whether or not an inmate will recidivate within 12 months of release from prison).
Since the application of the Ordinary Least Squared (OLS) regression to a binary
outcome variable would violate the assumption of homoscedasticity and normality of
the error term, as well as yield predicted probabilities that fall outside of the range 0 to
1, the employment of LR remedies those problems by transforming the binary outcome
variable into the natural log of the odds (“the log odds”) of the event of interest’s
occurrence (Aldrich and Nelson, 1984).

The general logistic regression model is,

Log p
.

1−pð Þ
h i

¼ β0 þ β1x1 þ β2x2 þ…þ βixi

where p is the estimated probability of the outcome of interest, β0 is the intercept term,
and β1, …, βi, are the logistic regression coefficients associated with the predictors x1,
…., xi. Further, to classify all cases into the defined category groups, LR applies a
classification cut-off to the estimated probability. For the classification of two groups or
categories (e.g., recidivated or did not recidivate), the LR default cut-off probability is
set at 0.50 under the assumption of equal misclassification costs for the two types of
misclassification, false positives and false negatives.2 However, in situations involving
disparate initial proportions (e.g., the proportion of sex offenders who recidivate is 5 %
and this proportion is much lower than the proportion of sex offenders who do not
recidivate—95 %) and in which the classification will favor the category with the
greater overall proportion or prior probabilities, researchers would need to change the
cut-off probability to achieve a better balance prediction. Due to its lenient require-
ments (LR does not require normally distributed variables or assume homoscedasticity;
Hosmer and Lemeshow, 1989; Thomas et al., 2005), LR emerges as the prevailing
technique of choice among actuarial approaches for a dichotomous classification.
However, because LR gives a probability value for outcome variable estimated in an
aggregate manner using all the factor values, it does not help the user to formulate an

2 A false positive is defined as a positive result on a diagnostic test for a condition in an individual who
actually does not have that condition and a false negative is defined as a negative result on a diagnostic test for
a condition in an individual who actually does have that condition.
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interview strategy. Critics of the LR method also contend that risk assessment tools
should reflect actual clinical thinking and that some other classification approaches
such as classification trees may be more suitable (Gardner et al., 1996; Rosenfeld and
Lewis, 2005; Steadman et al., 2000; Thomas et al., 2005). We next discuss the
classification tree approaches.

Classification Trees (CART and CHAID)

Both CART and CHAID are methods that build what is called a classification tree. The
classification tree approach has been advocated as an alternative to regression models
because it resembles a clinician type methodology of using a series of inquiries for the
purpose of classifying subjects into defined category groups (e.g., recidivists and non-
recidivists; Gardner et al., 1996; Rosenfeld and Lewis, 2005; Steadman et al., 2000;
Thomas et al., 2005). Through a sequential process (or a set of logical if-then condi-
tions), the sample is divided into “branches”3 and within each of these branches, the
best predictor is determined until no more variance can be explained with the remaining
variables or some other criterion such as a minimum group size, has been reached. The
resulting category groups represent subgroups of the original sample that differ in terms
of the probability of the outcome variable.

There is an array of classification tree models including Classification and Regression
Tree (CART; Breiman et al., 1984; Ripley, 1996), Chi-squared Automatic Interaction
Detection (CHAID; Kass, 1980), Quick, Unbiased, Efficient Statistical Trees (QUEST;
Loh and Shih, 1997), Decision Tree Forests (Breiman, 2001), Boosting Trees (Friedman,
1999), and Iterative Classification Tree (ICT; Steadman et al., 2000). Among the classi-
fication tree models, the CART and CHAID approaches appear to be both clinically
feasible and effectual in predicting future risks, particularly future violence (Silver, Smith,
and Banks, 2000; Thomas and Leese, 2003; Steadman et al., 2000). Both CART and
CHAIDmethods produce tree graphs that present actuarial data in a manner that is simple
and straight forward to use in a clinical settings (see Figure 1 and Appendix 1).

CART was developed and popularized by Breiman and colleagues (Breiman et al.
1984; see also, Ripley, 1996) while CHAIDwas originally proposed byKass (1980). Both
CART and CHAID will produce classification trees if the outcome variable is categorical
and regression trees if the outcome variable is numerical or a combination. Further, the
differences between the various tree-based methods lie in the strategies for splitting the
trees into branches and sub branches. To split a tree into branches, CARTemploys the Gini
measure of impurity4 for categorical outcome variables and the least-squared deviation
(LSD) measure of impurity for numerical outcome variables (Breiman et al., 1984). The
Gini index is given by,

3 A classification tree starts with the top decision branch, sometimes called the root or parent node, and the top
branch is split into subsequent branches known as child nodes Terminal nodes are branches on the tree beyond
which no further decisions are made.
4 The three measures of impurity generally used for classification problems are the Gini measure, the
generalized Chi-square measure, and the generalized G-square measure. The Chi-square measure is similar
to the standard Chi-square value computed for the expected and observed classifications, and the G-square
measure is similar to the maximum-likelihood Chi-square. The Gini measure is the index most often used for
measuring purity in the context of classification problems and the method advocated by the developers of
CART (Breiman et al., 1984).
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g tð Þ ¼ Σ j≠iC i jjð Þp j tjð Þp i tjð Þ
Where p jjtð Þ is the estimated probability that an observation belonging to group j

given that it is in subgroup t, pðijt ) is the estimated probability that an observation
belonging to group i given that it is in subgroup t, and C ij jð Þ is the probability of
misclassifying a category j case as category i. On the other hand, the LSD measure is
computed as,

R tð Þ ¼ 1
.
Nw tð ÞΣwi f i yi–ȳ tð Þ

� �2

where Nw(t) is the weighted number of cases in group t, wi is the value of the weighting
variable for case i, fi is the value of the frequency variable, yi is the value of the outcome
variable, and y (t) is the weighted mean for group t. Both the Gini index and the LSD
value are measures of goodness of fit. The CART procedure attempts to split a tree to
maximize the goodness of fit.

CHAID uses a different approach to split a tree into “branches.” CHAID uses tests
of statistical significance. Similar to CART, the statistical test employed by CHAID is
determined by the outcome variable. If the outcome variable is continuous, an F test is
used. If the outcome variable is ordinal, a likelihood-ratio test is used and if the
outcome variable is nominal, a Pearson chi-squared test is used (Rokach and
Maimon, 2008). For each input attribute ai, CHAID finds the pair of values in Vi that
is least significantly different with respect to the outcome variable. Further, for each
selected pair of values, CHAID assesses if the p value obtained is greater than a certain
merge threshold. If it is, then CHAID merges the values and searches for an additional
potential pair to be merged. The process is repeated until no more significant pairs are
found or a pre-specified condition is met (e.g., the maximum tree depth is reached; for
further description of CHAID, see Hill and Lewicki, 2006; Rokach and Maimon,
2008).

Similar to LR, the classification tree method is based on a probability value that is
estimated for each case and the cutoff for equal misclassification cost is assumed to be
0.5. Different cutoff values can also be used for different misclassification costs.
Further, to select the “right sized” tree 5 or to determine if the classification tree
computed from the “training” sample in which the outcomes are already known will
perform equally well in predicting outcomes in a second, independent “test” sample,6 it
is recommended that researchers perform cross-validation. Cross validation is essen-
tially an empirical approach to the problem of obtaining an unbiased estimate of
predictive accuracy (Gottfredson and Moriarty, 2006). The two proposed options for
performing cross-validation by the developers of CART (Breiman et al., 1984) are the
test sample cross-validation and the global cross-validation. In the test sample cross-
validation, the tree is computed from the “training” sample, and its predictive accuracy

5 The size of a tree in the classification and regression trees analysis is an important issue since an
unreasonably big tree can only make the interpretation of results more difficult. There are two recommended
strategies for selecting the “right-sized” tree. One strategy is to grow the tree to just the right size, where the
right size is determined by the researcher, based on the knowledge from previous research, diagnostic
information from previous analyses, or even intuition. The other strategy is to use a set of well-
documented, structured procedures developed by Breiman et al. (1984) for selecting the “right-sized” tree.
6 A classification tree model encompasses at least two samples - training and testing—and the training sample
is used to build the model and the testing sample is employed to validate its performance.
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is applied to predict the group membership in another independent “test” sample.
Alternatively, if a large “training” sample is available, a randomly selected proportion
of the cases (e.g., a third or a half) could be reserved and used as the “test” sample. In
the global cross-validation, the entire analysis is replicated a specified number of times
holding out a proportion of the “training” sample equal to 1 over the specified number
of times, and using each hold-out sample in turn as the “test” sample.

Neural Networks

Neural network (NN) models, also known as artificial neural networks, have emerged
from research in artificial intelligence. NN models are adaptive statistical models based
on an analogy with the structure of the brain. They are adaptive in that they can learn to
estimate the parameters of some population such as the values of “a” and “b” in the
regression equation y=a+bx (Abdi, Valentin, and Edelman, 1999). A neural network is
built from simple units called processing elements (PEs; or neurons by analogy). The
PEs are interlinked by a set of connection weights that loosely correspond to regression
coefficients in regression models. The processing ability of the neural network is stored
in these connection weights obtained through the process of training (or learning). In
other words, the goal of the network is to learn, or to discover, some patterns between
input and output values. The learning is accomplished through the modification of the
connection weights between PEs. The learning process also specifies the algorithm
used to estimate the parameters or the values of the connections between PEs (Abdi
et al., 1999; Caulkins et al., 1996; Gurney, 1997; Ripley, 1996).

There is a wide variety of neural network models and architectures.7 However, the
most commonly used design, and perhaps the most studied, is the multi-layer
perceptron neural network (MLPNN; Rumelhart and McClelland, 1986; see also,
Minsky and Papert, 1969). The MLPNN consists of an input layer (the first layer),
an output layer (the last layer), and a hidden layer (the intermediate layer). Each PE in
the input layer corresponds to a feature or characteristic that the researcher is interested
in using as a predictor (or independent variable). The MLPNN is also characterized by
a feed forward structure in that the information to be analyzed is input into each PE,
processed, and then passed on to each PE in the next layer. Also, information out of the
output PE is used to compute the estimates of errors, which are used to modify the
weights (see Figure 2 and Appendix 2).

The purpose of the MLPNN design is to map the input units to a desired output
similar to the way in which the dependent variable is a function of the independent
variables in regression analysis. This goal is accomplished by updating or adjusting the
weights on the connections between PEs, iteratively, in response to error signals
transmitted back through the network. That is, when the network is presented with an
input pattern, it computes the activation of the output unit(s) using the current network
weight structure (the weights are initialized randomly prior to training). The difference
between the output of the network and the desired output constitutes the error signal
and this signal is then propagated back through the network (via the PEs) for the

7 For a detailed description of the different neural network models see Abdi et al. (1999), Carpenter and
Grossberg (1991), Gurney (1997), and Rumelhart and McClelland (1988).
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purpose of updating or adjusting the connection weights. The connection weights are
continually updated until the sum of all error signals is minimized (White, 1989).

Similar to CART or CHAID, the MLPNN uses a training dataset to build a
classification model, in this case an artificial neural network, which can then be used
to classify cases in the testing dataset. Within the MLPNN design, the training is
conducted using the following steps (Gurney, 1997; Price et al., 2000):

1) Patterns or “signals” are presented at the input layers. The signals are sent from the
input layers to the hidden layers,

vpj ¼
XN

i¼1
WijX pi

where xpi are the input values of the PEs in the input layer, p is the observation
number, i is index for the PE in the input layer, wij is the weight between the i

th PE
in the input layer and the jth PE in the hidden layer, and vpj is the input to the j

th PE
in the hidden layer. N is the total number of independent variables. Further,

xpj ¼ f vpj
� �þ Binp; j

where f(v) is the activation function in the hidden layer (with the most commonly
used function being the logistic function), Binp,j is the input of the bias unit between
the input and hidden layers (note that this term corresponds with the intercept term
of regression models; Bishop, 1995);

2) The patterns or “signals” are sent from the hidden layer to the output layer,

vpk ¼ ΣM
j¼1wjkxpj

where wjk is the weight between the jth hidden unit and the kth output unit (given
that there are k output units), M is the number of hidden PEs, and vpk is the middle
set of “signals” in this process. Further,

ypk ¼ f vpk
� �þ Boutj

where f (v) is the activation function in the output layer (which is often set as
softmax function for the purpose of classification), Boutj is the output of the bias
unit between hidden and output layers, and ypk is the output of the output PEs.

3) The difference between the predictions (vpk) of the network and the target values
(or desired output) is determined using an error function, with the sum of squared
error and cross entropy being the two most popular kinds of error functions (Liu
et al., 2011).

4) The training algorithm is used to adjust the weights (wij and wjk) of the network.
The most common training algorithm includes back propagation, gradient decent,
conjugate descent, and BFGS (Abdi et al., 1999; Bishop, 1995; Gurney, 1997).

5) Steps 1 through 4 are repeated through a number of training cycles until the
network arrives at satisfactory outputs.
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Prior Comparison Studies

Prior comparative studies on the best statistical approaches to construct risk assessment
instruments have examined the relative predictive performance among conventional
regression techniques (multiple regression, logistic regression, negative binomial re-
gression, discrimination classification), classification tree methods (CART, CHAID),
and NN models. These studies have generally focused on the outcome of future violent
behavior or recidivism as well as drawn from samples of psychiatric patients and
criminal offenders. To the best of our knowledge, to date, there are seven studies
assessing the relative predictive utility of conventional regression models with classi-
fication tree models, four studies comparing conventional regression models with NN
models, and two studies contrasting all three methods.8 Overall, the results generated
from prior comparison studies are mixed and inconclusive (a description and overall
conclusion for the above studies are provided in Table 1).

Of the seven studies that examined conventional regression models with classifica-
tion tree models, two studies reported similar accuracy performance between the two
techniques in predicting future violence among psychiatric patients (Gardner et al.,
1996) and stalking offenders (Rosenfeld and Lewis, 2005; see Table 1). The remaining
five studies reported better performance by the classification models compared to the
conventional regression methods in predicting violence or recidivism among psychiat-
ric patients, probationers, and homicide offenders (Neuilly et al., 2011; Silver et al.,
2000; Stalans et al., 2004; Steadman et al., 2000; Thomas et al., 2005; see Table 1).

Among the four studies that compared conventional regression models with
NN models, two studies reported that NN models performed better than conven-
tional regression methods in predicting recidivism among juvenile probationers
(Brodzinski, Crable, and Scherer, 1994) and inmates released from prisons
(Palocsay et al., 2000). The remaining two studies showed that NN models were
neither superior nor worse than the conventional methods in predicting recidi-
vism among offenders released from prisons (Caulkins et al., 1996) and violent
reconviction among psychiatric patients (Grann and Langstrom, 2007). Pertaining
to the two studies that compared LR, CART, and NN models, the first study
found that while the performance of NNs was slightly better than that of LR and
CART models in predicting violent reconviction from a sample of male offenders
released from UK prisons, the differences did not reach significance. The authors
concluded that the three techniques exhibited similar accuracy performance (Liu
et al., 2011). In the second study, the authors also reported similar accuracy
performance among the three models in predicting violent reconviction from a
UK sample of men and women prisoners. However, relative to NNs and CART,
LR appeared to be a more robust model (Yang et al., 2010; see Table 1).

With the exception of the two studies that examined LR, CART, and NN
models together (Liu et al., 2011; Yang et al., 2010), prior comparison studies
were limited due to various issues including small sample size, inadequate cross-

8 Our review of prior research only includes studies that explicitly compare conventional regression models
with classification tree models and/or neural network models. There were prior studies that attempt to validate
the actuarial model developed in the MacArthur Violence Risk Assessment Study or examine the development
of the Classification of Violence Risk (COVR) software and these studies are not included in our review of
prior literature.
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validation strategies, and disregard for low base rates. Additionally, the incon-
sistency in findings reported by previous comparison studies may have been
attributed to factors such as specificity of predictors, homogeneity of samples,
definition criteria of outcomes, computational approach for model validation,
handling of over-fitting, tuning procedures to improve forecasting accuracy,
and improper implementation of forecasting procedures (Berk and Bleich,
2013; Liu et al., 2011)

In this study, we seek to extend the literature on comparative studies by assessing the
relative merits of four statistical techniques - LR, CART, CHAID, and NN models—for
their predictive utility on an outcome that has not been examined in prior research—
inmate misconduct. Inmate misconduct is a salient area of inquiry because inmate
misconduct reflects inmates’ adjustment to prison, affects the prison order and safety of
correctional staff and other inmates, and is closely related to prison classification in that
not only are inmate disciplinary infractions one of the measures of classification
effectiveness, they are also a necessary element for reclassification in prison (Gendreau,
Goggin, and Law, 1997; Jiang and Fisher-Giorlando, 2002). We also incorporate a wide
range of predictors drawn from one of the leading theoretical perspectives on inmate
misconduct - the importation model9 - and employ large training and testing samples.
We also draw data from a nationally representative sample of incarcerated offenders in
state and federal prisons. Before we present our data, we describe the importation
model on inmates’ adjustment to prison.

The Importation Model on Inmate Adaption

One of the leading theoretical perspectives used to account for inmate adjustment
to prison is the importation model. According to this perspective, inmates’ behav-
ior in confinement is determined by their distinctive traits and social background
prior to incarceration. That is, inmates import their roles from outside of prison
into the prison culture (Irwin, 1981; Irwin and Cressey, 1962) and if an inmate
was violent outside prison, it is very likely that the inmate will also be violent
while incarcerated. Further, the importation model argues that adaption to prison
will depend on the inmate’s ability to find a “niche” that meets his needs
(Seymour, 1977; Toch, 1977) as well as since inmates come from different
subgroups with different belief systems and norms, they do not represent a solitary
group in prison as some prison scholars have suggested (Irwin and Cressey, 1962;
Paterline and Petersen, 1999; Toch and Adams, 1986; Wooldredge, 1991).

Given the focus of the importation model on the effect of pre-prison factors on
prison adjustment, prior empirical studies examining the efficacy of this perspec-
tive in explaining inmate behavior have examined factors including race, gender,
age, social class, marital status, education, employment, offense type, criminal
history, gang membership, drug use, and personality variables (Byrne and

9 The four leading theoretical perspectives on inmates’ adjustment to prison are the deprivation, importation,
situational, and administrative control models (Clemmer, 1940; Irwin and Cressey, 1962; DiIulio 1987; Sykes,
1958; Steinke, 1991). In this paper, we chose to focus on the importation model and defer the examination of
the other models in subsequent papers since including measures from all four models would prove too
cumbersome.
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Hummer, 2007; Goodstein and Wright, 1989; Paterline and Petersen, 1999;
Wooldredge, 1991; Wright, 1991). Overall, the results generated from prior
assessments of the importation model have demonstrated support for it even in
competing criminological models. For example, Harer and Steffensmeier (1996)

Table 2 Descriptive statistics of variables for the five samplesa

Sample 1
training/testing

Sample 2
training/testing

Sample 3
training/testing

Sample 4
training/testing

Sample 5
training/testing

Outcome variable

Found guilty of breaking any rules

1 = Yes 0.53/0.53 0.53/0.54 0.53/0.53 0.53/0.52 0.53/0.52

0 = No 0.47/0.47 0.47/0.46 0.47/0.47 0.47/0.48 0.47/0.48

Predictor variables

Gender

1 = Male 0.81/0.80 0.81/0.80 0.81/0.8 0.81/0.81 0.80/0.83

0 = Female 0.19/0.20 0.19/0.20 0.19/0.19 0.19/0.19 0.20/0.17

Age

0 = Less than
20

0.04/0.03 0.04/0.03 0.04/0.04 0.04/0.03 0.03/0.03

1 = 20–35 0.49/0.52 0.49/0.51 0.49/0.47 0.50/0.47 0.50/0.50

2 = 36 or Older 0.47/0.45 0.47/0.46 0.47/0.49 0.46/0.50 0.47/0.47

Race

1 = African
American

0.45/0.45 0.45/0.46 0.45/0.45 0.45/0.45 0.45/0.45

0 = Other race 0.55/0.55 0.55/0.54 0.55/0.55 0.55/0.55 0.55/0.55

Marital status

1 = Married 0.16/0.15 0.16/0.15 0.16/0.15 0.15/0.17 0.16/0.16

0 = Not
married

0.84/0.85 0.84/0.85 0.84/0.85 0.85/0.83 0.84/0.84

Number of prior arrests

0 = none 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01

1 = One arrest 0.22/0.23 0.23/0.23 0.22/0.24 0.23/0.21 0.23/0.22

2 = Two to five
arrests

0.48/0.48 0.48/0.46 0.48/0.47 0.47/0.49 0.48/0.48

3 = Five or
more arrests

0.29/0.28 0.28/0.30 0.29/0.28 0.29/0.29 0.28/0.29

Age at first arrest

0 = Less than
13

0.09/0.09 0.09/0.10 0.09/0.09 0.10/0.08 0.09/0.10

1 = 13–20 0.64/0.65 0.64/0.65 0.64/0.64 0.64/0.64 0.64/0.63

2 = 21 or older 0.27/0.26 0.27/0.25 0.27/0.27 0.26/28 0.27/0.27

Employment prior to incarceration

1 = Yes 0.69/0.70 0.70/0.67 0.69/0.68 0.69/0.70 0.69/0.70

0 = No 0.31/0.30 0.30/0.33 0.31/0.32 0.31/0.30 0.31/0.30

a Each of the training samples consists of 8,000 cases and each of the testing samples includes 2,000 cases

58 Am J Crim Just (2015) 40:47–74



examined the applicability of the importation and deprivation models in account-
ing for inmate violent misconduct. The authors likened the deprivation versus
importation models to the structural versus cultural theories of violence
(respectively) and hypothesized that the patterns of inmate violence in prisons
would parallel those in the larger society.

Employing data from a sample of only white and black inmates from 58 male
federal correctional institutions, Harer and Steffensmeier (1996) uncovered that
net of deprivation or structural measures (crowding, length of time served, prison
turnover rate, staff to inmate ratios, furloughs, security level of prison, and staff
perception of their ability to communicate and work constructively with in-
mates), black inmates had significantly higher levels of prison violence than
white inmates but lower levels of alcohol/drug misconduct. The authors attrib-
uted their findings as evidence supporting the cultural or importational view of
prison behavior since both inside and outside prison, blacks have higher rates of
violence than whites but whites have as high or higher rates of alcohol and drug
abuse than blacks (Wallace and Bachman, 1991).

In a recent study, Jiang and Fisher-Giorlando (2002) compared the importa-
tion, deprivation, and situational models for their efficacy in explaining inmate
misconduct and violent incidents against staff and other inmates. Drawing from
official data collected from 186 inmates in a single correctional facility, the
authors found that the situational and deprivation models helped explain violent
incidents against staff while the situational and importation models helped
explain violent incidents against inmates (see also, Cao, Zhao, and Dine, 1997;
Dhami, Ayton, and Loewenstein, 2007; Sorensen, Wrinkle, and Gutierrez, 1998;
Paterline and Petersen, 1999; Wooldredge 1991).10

In this study, we employ a wide range of importation variables to evaluate the
relative utility of LR, CART, CHAID, and MLPNN models in predicting inmate
misconduct. In the next section, we describe our data and methods.

Data and Methods

Data for the current study come from the 2004 Survey of Inmates in State and Federal
Correctional Facilities (SISFCF) conducted for the Bureau of Justice Statistics (BJS) by
the Bureau of the Census (ICPSR #4572). Data collection for SISFCF involved a two-
stage stratified sample design with correctional facilities chosen at the first stage and
inmates within facilities chosen at the second stage. SISFCF provides nationally
representative data on inmates held in state and federal prisons with personal interviews
with the inmates occurring between October 2003 and May 2004. Inmates participated
in SISFCF provided information about their current offense and sentence, criminal
history, family background and characteristics, prior drug and alcohol use, medical and

10 Since reviews of the importation model are readily available elsewhere (see for example, Byrne and
Hummer, 2007; Cao, Zhao, and Dine 1997; Goodstein and Wright, 1989; Paterline and Petersen, 1999;
Wooldredge, 1991; Wright, 1991) and due to page limitation, we forego a thorough review of the literature on
this perspective.
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mental health conditions, participation in treatment programs, gun possession and use,
and prison activities, programs, and services.

Samples

A total of 14,499 inmates participated in the 2004 SISFCF and after accounting for
missing data and nonresponses, the sample size was reduced to 10,328. Since we were
interested in the global cross-validation method, we randomly selected 10,000 cases
from the original dataset and partitioned it into five sub-datasets of 2,000 cases each
labeled A, B, C, D, and E. We tested all four techniques (LR, CART, CHAID, and
MLPNN) five times using each of the five subsets as testing sample and the remaining
four subsets together as training sample. For example, in the first set, subsets B, C, D,
and E were combined and used as the training sample while subset A was used as the
testing sample. In the second set, subsets C, D, E, and Awere combined and used as the
training sample while subset B was used as the testing sample11 and so on. We believe
this multi-validation method yields a more reliable classification accuracy than a single-
sample validation as the latter approach may result in high model fit values (Grann and
Langstrom, 2007).

Table 2 shows the demographic and other characteristics of the five sub-datasets. As
shown in Table 2, all five sub-datasets demonstrated similar demographic and other
characteristics. In particular, in all five sub-datasets, the majority of the respondents
were males (80–83 %), almost half were African Americans (45–46 %), and many of
the respondents (47–52 %) were in the 20 to 35 years age range. Additionally,
almost one-fifth of the respondents were married (15–17 %) and many were
employed (68–70 %) as well as attended high school (73–76 %) before being
incarcerated. On average, respondents in all five sub-datasets reported having
between two and five prior arrests and the age of their first arrest was between
the ages of 13 and 20. Many respondents (47–52 %) in each of the five sub-
datasets indicated that they consumed alcohol or used drugs previously and
approximately one-third of the respondents (28–30 %) in each sub-dataset report-
ed that they have been diagnosed with a mental or personality disorder. Finally,
almost half of the respondents in each of the five sub-datasets were serving their
current sentences for a violent offense (46–48 %) and slightly over half of the
respondents (52–54 %) reported that they had violated at least one type of prison
rules or regulations (Table 2).

Measures

Outcome Variable Our outcome variable in this study is whether the inmate was cited
or found guilty of any prison violations. 12 More specifically, this variable was
measured using the question, “Since your admission, have you been written up for or

11 The combinations of the five sub-datasets are as followed with the letter on the left side represents the
testing sample and the letters in the right side represent the training sample: Sample 1 = A/BCDE; Sample 2 =
B/CDEA; Sample 3 = C/DEAB; Sample 4 = D/EABC; and Sample 5=E/ABCD.
12 We elected to employ a general measure of any prison misconduct because prior comparative research has
utilized similar measures such as delinquency, recidivism, or violence (see for example, Caulkins et al., 1996;
Rosenfeld and Lewis, 2005; Thomas et al., 2005).
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found guilty of breaking any prison rules,” and the response options were “Yes” and
“No.” This variable was then coded as a dichotomous variable with 1 = the inmate was
cited/found guilty of at least one prison misconduct and 0 = the inmate was not cited/
found guilty of any prison misconduct. The descriptive statistics for this outcome
variable are shown in Table 2.

Predictor Variables Eleven measures derived from the importation model were includ-
ed in the study as predictor variables. Gender was coded as a dichotomous variable
with 1 = Male and 0 = Female and Racewas also coded as a dichotomous variable with
1 = African American and 0 = Other Race.13 Marital Status was measured using the
question, “Are you now married, widowed, divorced, separated, or have you never
been married,” and the responses were recoded with 1 = Married and 0 = Not Married
(i.e., widowed, divorced, separated or never been married). Employment Prior to
Incarceration was measured using the question, “During the month before your arrest,
did you have a job or a business,” and this variable was also coded as a dichotomous
variable with 1 = the inmate had a job/business before incarceration and 0 = the inmate
did not have a job/business before incarceration.

For the variable Age, respondents were asked to report their age in years and the responses
were collapsed into three categories with 0 = Less than 21 years old, 1 = 21 years old to
35 years old, and 2 = 36 years or older. Likewise, for the variable Age at First Arrest,
inmates’ responses to the question, “How old were you the first time you were arrested for
a crime,”were collapsed into three categories with 0 = Less than 13 years old, 1 = 13 years
old to 20 years old, and 2 = 21 years or older. The variable, Education Prior to
Incarceration, was measured using the question, “Before your admission, what was the
highest grade of school that you had attended,” and the responses were collapsed into four
categories with 0 = Less Than High School (i.e., kindergarten through 8th grade),
1 = High School (i.e., 9th grade through 12th grade), 2 = Some College (i.e.,
freshman through senior in college), and 3 = College or Graduate Degree (i.e.,
Bachelor Degree or Higher).

The variable, Number of Prior Arrests, was measured using the question, “How
many times have you ever been arrested, as an adult or a juvenile, before your arrest
(for the current offense)” and the responses were collapsed into four categories with 0 =
None, 1 = One Arrest, 2 = Two to Five Arrests, and 3 = Five or More Arrests. On the
other hand, the variable, Current Offense, was measured using inmates’ responses to
the question, “Are you currently sentenced to serve time for any offense,” and the
responses included four categories with 0 = Public Disorder, 1 = Drug Offense, 2 =
Property Offense, and 3 = Violent Offense.

Finally, respondents were asked if they have ever used any of the following: 1)
heroin, 2) other opiates, 3) methamphetamine, 4) other amphetamine, 5) methaqualone,

13 It is noteworthy that prior research on the importation model tends to involve selective coding of the
variable race. Some studies compare Black inmates with non-Black inmates, other studies compare White
inmates with non-White inmates, and some studies even encompass several dichotomous measures of race
(i.e., Black vs. other racial groups, White vs. other racial groups, Hispanic vs. other racial groups, etc.). We
elected to code our race variable as Black vs. Non-Black because the importation model emphasizes the effect
of pre-prison characteristics on prison adjustment and there is evidence that outside prison, Blacks have higher
crime rates than Whites and other racial groups (see for example, Snyder, 2011).
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6) barbiturates, 7) tranquilizers, 8) crack, 9) cocaine, 10) PCP, 11) ecstasy, 12) LSD, 13)
marijuana/hashish, and 14) any other drugs. The responses were combined to create the
variable Prior Substance Use and this variable was coded as a dichotomous variable
with 1 = the inmate used at least one drug previously or 0 = the inmate did not use any
drugs previously. Likewise, respondents were asked if they have ever been diagnosed
by a mental health professional such as a psychiatrist or a psychologist with any of the
following disorders: 1) a depressive disorder, 2) manic- depression, bipolar disorder, or
mania, 3) schizophrenia or other psychotic disorders, 4) post-traumatic disorder, 5)
other anxiety disorders such as panic disorder, 6) a personality disorder, and 7) other
mental or emotional condition. The responses were combined to create the variable
Prior Mental/Personality Disorders and this variable was coded as a dichotomous
variable with 1 = the inmate was diagnosed with at least one mental or personality
disorder and 0 = the inmate was not diagnosed with any of the mental or personality
disorders. The descriptive statistics for all of the predictor variables are shown in
Table 2.

Evaluation Indicators

Measures commonly used in prior comparative studies to gauge the “predictive
accuracy” of a risk assessment instrument include “percent correctly classified,”
sensitivity and specificity, false positive and false negative rates, proportionate
reduction in error (PRE), and Mean Cost Rating (MCR; Gottfredson and Moriarty,
2006). It is noteworthy that the above measures have been criticized for their

Table 4 The comparison among LR, CART, CHAID, and MLPNN by AUC and 95 % C.I. of AUC

Sub-sets
combinationa

(1) LR AUC
(95 % CI of AUC)

(2) CART AUC
(95 % CI of AUC)

(3) CHAID AUC
(95 % CI of AUC)

(4) MLPNN AUC
(95 % CI of AUC)

A/BCDE Train 0.68 (0.67, 0.69) 0.66 (0.65, 0.67) 0.68 (0.67, 0.69) 0.69 (0.68, 0.70)

Test 0.66 (0.64, 0.68) 0.62 (0.60, 0.64) 0.65 (0.63, 0.67) 0.67 (0.65, 0.69)

Total 0.68 (0.67, 0.69) 0.65 (0.64, 0.66) 0.67 (0.66, 0.68) 0.69 (0.68, 0.70)

B/CDEA Train 0.68 (0.67, 0.69) 0.64 (0.63, 0.65) 0.67 (0.66, 0.68) 0.69 (0.68, 0.70)

Test 0.70 (0.67, 0.72) 0.63 (0.61, 0.65) 0.65 (0.63, 0.67) 0.69 (0.67, 0.71)

Total 0.68 (0.67, 0.69) 0.64 (0.63, 0.65) 0.67 (0.66, 0.68) 0.69 (0.68, 0.70)

C/DEAB Train 0.68 (0.67, 0.69) 0.65 (0.64, 0.66) 0.68 (0.67, 0.69) 0.69 (0.68, 0.70)

Test 0.67 (0.65, 0.69) 0.60 (0.58, 0.62) 0.62 (0.60, 0.64) 0.67 (0.65, 0.69)

Total 0.68 (0.67, 0.69) 0.64 (0.63, 0.65) 0.67 (0.66, 0.68) 0.69 (0.68, 0.70)

D/EABC Train 0.68 (0.67, 0.69) 0.65 (0.64, 0.66) 0.67 (0.66, 0.68) 0.69 (0.68, 0.70)

Test 0.67 (0.65, 0.69) 0.65 (0.64, 0.66) 0.64 (0.62, 0.66) 0.68 (0.66, 0.70)

Total 0.68 (0.67, 0.69) 0.64 (0.63, 0.65) 0.67 (0.66, 0.68) 0.68 (0.67, 0.69)

E/ABCD Train 0.68 (0.67, 0.69) 0.65 (0.64, 0.66) 0.67 (0.66, 0.68) 0.69 (0.68, 0.70)

Test 0.68 (0.66, 0.70) 0.61 (0.59, 0.63) 0.63 (0.61, 0.65) 0.67 (0.65, 0.69)

Total 0.68 (0.67, 0.69) 0.64 (0.63, 0.65) 0.67 (0.66, 0.68) 0.69 (0.68, 0.70)

a The letter on the left side represents the testing sample (N=2,000) and the letters on the right side represent
the training sample (N=8,000)
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instability with varying predictor base rates as well as biases in favor of certain outcomes
(Gottfredson and Moriarty, 2006; Rice and Harris, 1995). In recent years, the area under
the curve (AUC) of the Receiver Operating Characteristic (ROC) has been advocated as
an effective and appropriate index of accuracy because it is unaffected by differential
base rates (Mossman, 1994; Rice and Harris, 1995).

The ROC curves originated in signal detection theory (Egan, 1975) and over the past
several years, have been extended to machine learning and data mining applications for
model evaluation and selection (Perlich, Provost, and Simonof, 2003; Yan et al., 2003).
The ROC curve for a binary classification problem plots the true positive rate14 as a
function of the false positive rate 15 for all observed predictor values. Essentially, the
ROC curve depicts the tradeoff in the false positive rate that occurs as the true positive
rate increases with lower cutoff scores and vice versa (see Figure 3 and Appendix 3).
The AUC of the ROC represents the effect size estimate derived from the ROC analysis
and ranges from 0.0 (perfect negative prediction) to 1.0 (perfect positive prediction).

Ensuing prior comparative studies, we rely on multiple evaluation indicators in
assessing the predictive accuracy of the four statistical techniques included in our
study. In addition to reporting the AUC value and 95 % C.I. of AUC, we also report
the sensitivity, specificity, overall accuracy, and 95 % C.I. of the overall accuracy. The
sensitivity indicator represents the proportion of true positives that are correctly
identified by a statistical technique16 and the specificity indicator denotes the proportion
of true negatives classified by a statistical method.17 The overall accuracy indicator
signifies the proportion of true positives and true negatives identified by a statistical
method.18 Finally, to build LR, CART, CHAID, and MLPNN models, we employ the
STATISTICA 11.0 software package (StatSoft 2008) and our cut-off probability is set
at 0.5.19

Results

Table 3 shows the sensitivity, specificity, accuracy, and a 95 % C.I.20 of the overall
accuracy for LR, CART, CHAID, and MLPNN models using the 0.5 cut-off probabil-
ity. As shown in Table 3, the sensitivity values generated by the LR model for the five
training samples range from 0.69 to 0.71, and for the corresponding testing samples,
range from 0.68 to 0.72. The results on Table 3 also reveal that compared to the
sensitivity values, the specificity values generated by the LR model for both training
and testing samples were lower (the specificity values range from 0.55 to 0.57).
However, there appears to be no evidence of reduce accuracy or shrinkage21 in the

14 The true positive rate = (the # of true positives)/(the # of all positives)
15 The false positive rate = 1—[(the # of true negatives)/(the # of all negatives)]
16 Sensitivity = (the # of true positives)/(the # of all positives)
17 Specificity = (the # of true negatives)/(the # of all negatives)
18 Overall Accuracy = (the # of true positives and true negatives)/(the # of all positives and all negatives)
19 We selected 0.50 as the cut-off probability based on the fact that between 52–54 % of the inmates in the five
sub-samples were found guilty of breaking any rules.
20 Given that the overall accuracy is a proportion, we constructed the confidence intervals using standard
methods for proportions (see for example, Gardner and Altman, 1989).
21 Shrinkage or over-fitting occurs when a statistical model demonstrates poor predictive performance or when
the predictive accuracy of a model decreases from the training sample to the testing sample.
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testing samples pertaining to the sensitivity and specificity accuracy (compare the
values of the training samples with the values of the testing samples under the columns
labeled “Sen” and “Spe” for the LR model on Table 3). Given the higher sensitivity
values generated by the LR model relative to the specificity values, it appears that the
LR model performs better at predicting inmate misconduct than at identifying inmate
obedience.

The LR model also generated an accuracy value from 0.63 to 0.64 for the training
samples (95 % CI: 0.62–0.65) and an accuracy value from 0.62 to 0.065 for the testing
samples (95 % CI: 0.60–0.68; see the column labeled “Acc” under the LR model on
Table 3). Further, the overall performance of the LR model (i.e., the combined
performance of training and testing samples) for the five sets of data is 0.64 (95 %
CI: 0.63–0.65; see the rows labeled “Total” under the LR model on Table 3).

Unlike the LR model, the sensitivity values generated by the CART and CHAID
models for the training samples varied widely (from 0.61 to 0.77 and from 0.57 to 0.78,
respectively; see Table 3). The specificity values generated by both models for the
training samples follow a similar pattern (they range from 0.47 to 0.65 and from 0.47 to
0.69, respectively; see Table 3). On the other hand, the sensitivity and specificity values
generated by both models for the testing samples were less dispersed (the sensitivity
values generated by both models range from 0.55 to 0.59 and the specificity values
range from 0.64 to 0.68; see Table 3). Additionally, while there was evidence of
shrinkage in the testing sample pertaining to the sensitivity accuracy for both models,
there was no evidence of shrinkage pertaining to the specificity accuracy (compare the
values of the training samples with the values of the testing samples under the columns
labeled “Sen” and “Spe” for the CART and CHAID models on Table 3).

With regard to the accuracy values, the CART model generated an accuracy value
from 0.62 to 0.63 (95 % CI: 0.61–0.65) for the five training samples and an accuracy
value from 0.60 to 0.63 (95 % CI: 0.57–0.65) for the five testing samples (see the
column labeled “Acc” under the CART model on Table 3). On the other hand, the
CHAID model generated an accuracy value of 0.63 for all five training samples and an
accuracy value from 0.60 to 0.63 for the five testing samples (Table 3). The LR model
(accuracy=0.64; 95 % CI: 0.63–0.65) seems to demonstrate slightly greater predictive
utility relative to the CART and CHAID models in predicting inmate misconduct (the
accuracy value for both CART and CHAID was 0.63; 95 % CI: 0.61–0.65; see Table 3).

Pertaining to the MLPNN model, the sensitivity values generated by this technique
for the five training samples range from 0.68 to 0.69 and for the five testing samples
range from 0.66 to 0.72 (Table 3). On the other hand, the specificity values generated
by the MLPNNmodel for the five training samples range from 0.58 to 0.61 while those
for the five testing samples range from 0.58 to 0.60. Furthermore, there was minimal
evidence of shrinkage in the testing sample pertaining to the sensitivity and specificity
accuracy (compare the values of the training samples with the values of the testing
samples under the columns labeled “Sen” and “Spe” for the MLPNNmodel on Table 3)
and similar to the LR model where the generated specificity values for all five sets of
data were lower than the sensitivity values, it appears that the MLPNN technique
perform better at detecting inmate misconduct than at identifying inmate obedience.

The MLPNN model also yielded an accuracy value of 0.64 (95 % CI: 0.63–0.65) for
the five training samples and from 0.63 to 0.66 (95 % CI: 0.61–0.68) for the five testing
samples (see the column labeled “Acc” under the MLPNN model on Table 3).

Am J Crim Just (2015) 40:47–74 65



Additionally, the MLPNN model (accuracy=0.64–0.65; 95 % CI: 0.63–0.66) seems to
demonstrate slightly better predictive power relative to the LR (accuracy=0.64; 95 %
CI: 0.63–0.65), CART and CHAID models in predicting inmate misconduct (accura-
cy=0.63; 95 % CI: 0.61–0.65; see Table 3).

Table 4 presents AUC under ROC values for LR, CART, CHAID, and MLPNN
models and also the 95 % C.I. of AUC values. It should be noted that the “Total” AUC
values recorded in Table 4 represent the weighted averages of the AUCs for the training
and testing samples and the weights are based on the size of the training and testing
samples.22 The results on Table 4 reveal that the LR model generated an AUC value of
0.68 (95 % CI: 0.67–0.69) for each of the five training samples and an AUC value from
0.66 to 0.70 (95 % CI: 0.64–0.72) for the five testing samples (Table 4). Table 4 also
reveals that the Total AUC value yielded by the LR model was 0.68 (95 % CI: 0.67–
0.69; see the rows labeled “Total” under the LR model on Table 4) and there was
minimal evidence of shrinkage in the testing sample.

The CART model generated an AUC value of 0.64 to 0.66 (95 % CI: 0.63–0.67) for
the training samples and an AUC value of 0.60 to 0.63 (95 % CI: 0.58–0.65) for the
testing samples (Table 4). The Total AUC value generated by the CART model for the
five sets of data ranges from 0.64 to 0.65 (95 % CI: 0.63–0.66; see the rows labeled
“Total” under the CART model on Table 4). With regard to the CHAID model, it
generated an AUC value from 0.67 to 0.68 (95%CI: 0.66–0.69) for the training samples
and an AUC value from 0.62 to 0.65 (95 % CI: 0.60–0.67) for the testing samples
(Table 4). The CHAID model also yielded a Total AUC value of 0.67 (95 % CI: 0.66–
0.68; see the rows labeled “Total” under the CHAID model on Table 4) and for both
CART and CHAID models, there was evidence of shrinkage in the testing sample.

Table 4 reveals that the MLPNN model generated an AUC value of 0.69 (95 % CI:
0.68–0.70) for each of the training samples and an AUC value from 0.67 to 0.69 (95 %
CI: 0.65–0.71) for the testing samples (Table 4). The MLPNN model also generated a
Total AUC value of 0.68 to 0.69 (95 % CI: 0.67–0.70) for the five sets of data (see the
rows labeled “Total” under the MLPNN model on Table 4) and similar to the LR
model, there was minimal evidence of shrinkage in the testing sample. Accordingly, it
appears that the predictive utility of the MLPNN model in predicting inmate miscon-
duct (AUC value=0.68 to 0.69; 95 % CI: 0.67–0.70) is slightly superior than the
predictive utility of the LR model (AUC value=0.68; 95 % CI: 0.67–0.69), and the
predictive powers of both LR and MLPNN models are greater than the predictive
utilities of both CART and CHAID models (AUC value=0.64 to 0.65; 95 % CI: 0.63–
0.65 and AUC value=0.67; 95 % CI: 0.66–0.68, respectively; Table 4). The results also
reveal that the predictive utility of the CHAID model (AUC value=0.67; 95 % CI:
0.66–0.68) is better than the predictive power of the CART model (AUC value=0.64 to
0.65; 95 % CI: 0.63–0.65; Table 4).23

22 Total value = [(8,000 X AUC of the training sample + 2000 X AUC the testing sample)/10,000].
23 We also performed Analysis of Variance (ANOVA) test for testing the differences in the means of
classification accuracy and conduct pairwise t-test for the various pairs formed between the four classification
methods. We found the MLPNN and the LR techniques performed significantly better than the CART and
CHAID methods in predicting inmate misconduct (p-value<0.001), the CHAID technique outperformed the
CART method (p-value<0.001) in classifying disobeyed inmates, and the MLPNN approach performed
significantly better than the LR method (p-value<0.01) in predicting inmate misconduct (results are not
shown but available upon request).
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Discussion and Conclusion

In this paper, we seek to contribute to the scholarship on the identification of the best
statistical methods to use for the purpose of testing and developing risk instruments by
comparing the predictive power of a traditional regression approach, LR, with three
classification techniques, CART, CHAID, and MLPNN, in predicting inmate miscon-
duct. Given the sparse applicability of CART, CHAID, and NN models in the field of
criminal justice as well as their equivocal comparability with the LR model, we feel the
undertaking of such comparison study is both essential and warranted. To the best of
our knowledge, no study to date has focused on the outcome of inmate misconduct as
well as examined the predictive utility of the above four models together.

We found several findings that parallel the conclusions reached by previous re-
searchers as well as discovered several stimulating areas for future research. First, in
line with prior research, we found evidence of shrinkage (or over-fitting) in the testing
sample among the CART and CHAID methods (Liu et al., 2011; Rosenfeld and Lewis,

Marital Status = S Marital Status = M

If (Marital Status = S) If (Marital Status = M) 

Then P(Recidivism)=0.91 Then P(Recidivism)=0.08

Total           100

Recidivism        70

Total (S)       75

Recidivism  68

Total (M)     25

Recidivism    2

Fig. 1 A one-factor decision tree diagrama
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Hidden Layer ……………

Input Layer

………….

Fig. 2 A Simple Multilayer Feed Forward Neural Network Architecture with Backpropagation
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2005; Thomas et al., 2005; Yang et al., 2010). Second, the results generated from our
study provide further support for the stability and robustness of the LR model relative
to the CART and CHAID models (Gardner et al., 1996; Liu et al., 2011; Rosenfeld and
Lewis, 2005; Stalans et al., 2004; Thomas et al., 2005). Third, although there was slight
evidence of over-fitting with the MLPNN approach, it nevertheless demonstrated
comparable predictive accuracy to the LR approach (Liu et al., 2011; Palocsay et al.,
2000; Yang et al., 2010). Fourth, the AUCs under the ROC generated from our study
appear to correspond with findings reported in prior research in that they did not exceed
the 0.75 threshold (i.e., 0.75 is the maximum AUC value reported in previous research;
Kroner and Mills, 2001; Coid et al., 2007).

In addition to the above findings, we also discovered that all four techniques
examined in our study performed better at predicting misbehaving inmates than at
identifying obedient inmates (i.e., all four approaches were more sensitive than specific
in predicting inmate misconduct; see Table 3). Further, we found that overall, the
CHAID technique performed better than the CART method at both predicting
misbehaving inmates as well as identifying obedient inmates (see Table 3). Given the
neglect of the CHAID technique in prior comparison studies,24 we hope this finding
will promote the inclusion of this classification tree technique in future comparison
studies and projects. We also uncovered that the MLPNNmethod demonstrated slightly
better performance at predicting obedient inmates relative to the LR technique (i.e., the
specificity values of the MLPNN method were slightly better than those of the LR
approach; see Table 3).

We encourage researchers and scholars to further validate the predictive performance
of the above four techniques using different predictors, for different outcomes, and
employing different populations. In the current study, we elected to draw solely from
the importation model on inmate adaptation for our predictors because the inclusion of
factors from the other leading perspectives (i.e., the deprivation, situational, and
administrative control models) would prove too cumbersome. We inspire future studies
to examine the predictive utility of the above four approaches utilizing predictors
derived from the other leading models on inmate adaptation.

24 To the best of our knowledge, to date, only one study has investigated the predictive utility between CHAID
and LR (see Steadman et al., 2000).
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Relatedly, given the lack of specification with regard to the outcome variable
included in our study (i.e., inmates who were written up for or found guilty of breaking
any prison rules versus inmates who did not break any prison rules), we encourage
researchers to examine model performance with different outcome specifications such
as comparing “true” obedient inmates with those found guilty of violent misconduct or
exclude inmates found guilty of non-violent misconduct from the obedient inmate
group. The above strategies would result in more homogeneous or more specific
outcome category. Similarly, given the heterogeneity of the sample included in our
study (i.e., almost 90 % of the inmates in our sample reported that they had used drugs
previously; see Table 2), we recommend that future comparison studies consider
exploring the effect of heterogeneousness on the predictive validity of all included
models.

We also questioned whether our results corroborated with the importation model on
inmate adjustment or whether there is any support to the theory that inmates bring with
them distinct traits and characteristics leading to misconduct in prison. The sensitivity
values or the rates of correctly predicting inmate misconduct generated by the LR and
MLPNN models in our study ranged from 0.66 to 0.72. The overall accuracy for these
two techniques ranged from 0.64 to 0.65 (see Table 3). Given that these accuracies were
significantly greater than our base rate of 50 %, we can say that the results provided
evidence in support of the importation perspective. If these importation variables were
not good predictors, we would get a classification accuracy of 50 % which is our base
rate. Nonetheless, we encourage future research to include predictor variables from the
importation model and other theoretical perspectives on inmate adaptation to see if
higher prediction accuracies are possible.

Finally, given the recent advocacy for wider use of statistical techniques other than
conventional regression-based procedures (see Berk and Bleich, 2013; Bushway, 2013;
Ridgeway, 2013) and given the evidence generated from our study and from previous
research that the MLPNN model possesses comparable predictive accuracy as the LR
method, we encourage researchers and scholars to further investigate the predictive
performance and utility of NN models. In particular, notwithstanding the potential
issues of over-fitting and the “black box” 25 nature associated with NNs, there is
evidence that the NN technique is particularly effective when the primary goal is
outcome prediction (i.e., forecasting) and when complex nonlinearities exist in a dataset
(see Tu, 1996). Additionally, since NNs are “trained” to solve a particular type of
problem (i.e., they are adaptive statistical models), this “learning” ability enables NNs
to tackle a wide range of problems, some of which have proved taxing using
conventional computing methods (Florio, Einsfeld, and Levy, 1994). There is
also evidence that NN models are more sensitive than other types of models
(i.e., LR and CART) with the inclusion of dynamic variables (Yang et al.,
2010), and thus, NN models might be useful and amenable to the prediction of
changing behavior and responsiveness.

25 One issue inherent in all NN models is model transparency. Unlike the LR method, it is not possible to
determine which variables contribute mainly to a particular output in a NNmodel (for further discussion on the
issue of model transparency, see Bigi et al., 2005; Grann and Langstrom, 2007; Guerriere and Detsky, 1991;
Ning et al., 2006)
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Appendix 1

Decision tree diagrams are a common way to visually display classification
schemes. A decision tree consists of nodes which further split or into two or more
branches, creating more nodes. The diagram starts with a root node, which is split
into two or more nodes based on some splitting rule. The splitting rule is based on
the values of a certain variable. The node that splits into multiple nodes is called
the parent node and the split nodes are called child nodes. The child nodes, in turn
become parent nodes when they are split based on another splitting rule. When a
node does not split any further, we call that node a leaf node or a terminal node. A
branch ends with a terminal node. The terminal node shows the probability of the
class in which a case belongs.

The decision tree diagram shown above displays the probability of an offender
recidivating based on marital status. In this example, the root node shows the
percentage of cases involving “recidivism”. The root node is split into two
branches based on the value of the variable “marital status”. The first child node
includes all the cases with a marital status of single and the second node includes
all the cases with a marital status of married. The corresponding data indicate that
from the sample of 100 offenders, 70 recidivated and 30 did not. Further, among
the 75 offenders who were single, 68 recidivated and among the 25 offenders who
were married, only 2 recidivated. Accordingly, the probability of an offender who
is single recidivating is 91 % and the probability of an offender who is married
recidivating is 8 %.

Appendix 2

The simple multilayer neural network architecture shown above has three layers:
input, output and hidden. Each layer consists of a number of processing elements (PEs
or neurons). In feed-forward neural network architectures, information is input into
each PE, processed, and then passed on to each PE in the layer above. In the case of the
output PE, information is simply passed out of the network.

Each PE in the input layer corresponds to a feature or characteristic that the
researcher is interested in using as an independent variable. The goal of the
network is to map the input units to a desired output similar to the way in which
the dependent variable is a function of the independent variables in regression
analysis.

The PEs are interlinked by a set of connections which are characterized by
weights. In feed-forward networks with backpropagation, the networks “learn” to
map the input units to the output units by adjusting the weights on the connections
in response to error signals transmitted back through the network. The difference
between the output of the network and the target mapping constitutes the error
signal. The error signal is propagated back through the network via the PEs and
their connections and the weights are updated. This process continues until the
sum of all error signals is minimized.
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Appendix 3

A Receiver operating characteristic (ROC) curve is a graphical plot which illus-
trates the performance of a binary classifier system as its discriminant threshold is
varied. It is created by plotting the fraction of true positives out of all the positives
(Sensitivity) on the y-axis and false positives out of the negatives (1-specificity) on
the x-axis at various threshold settings. The location of a point in the ROC space
depicts the classification accuracy of a classification instrument. For example, the
point at coordinate of (0,1) indicates that the classification instrument has a sensitiv-
ity of 100 % and specificity of 100 % (i.e., perfect classification). Classification
instruments with 50 % sensitivity and 50 % specificity can be visualized on the
diagonal determined by coordinate (0,0) and coordinate (1,0) and a point predicted
by a classification instrument that falls into the area above the diagonal represents a
good prediction. Conversely, a point predicted by a classification method that falls
into the area below the diagonal represents a bad prediction. Theoretically, a random
guess would give a point on the diagonal.

The ROC curve depicts the tradeoff between the true positive rate (TPR) and
false positive rate (FPR) for different cut-points of a classification instrument. The
interpretation of the ROC curve is similar to the single point in the ROC space in
that the closer the points on the ROC curve to the ideal coordinate (0,1) the more
accurate the classification instrument is. On the other hand, the closer the points
on the ROC curve to the diagonal, the less accurate the classification instrument
is. In the above diagram, a typical ROC curve looks like the curved line and the
area under that curve is called the AUC under ROC. Higher the AUC values,
better the classifier.
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