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ABSTRACT 

 

This paper addresses the task scheduling problem which involves minimizing the makespan in 

scheduling n tasks on m machines (resources) where the tasks follow a precedence relation and 

preemption is not allowed.  The machines (resources) are all identical and a task needs only one 

machine for processing.  Like most scheduling problems, this one is NP-hard in nature, making it 

difficult to find exact solutions for larger problems in reasonable computational time.  Heuristic 

and metaheuristic approaches are therefore needed to solve this type of problem.  

 

This paper proposes a metaheuristic approach - called NeuroGenetic - which is a combination of 

an augmented neural network and a genetic algorithm.  The augmented neural network approach 

is itself a hybrid of a heuristic approach and a neural network approach.  The NeuroGenetic 

approach is tested against some popular test problems from the literature, and the results indicate 

that the NeuroGenetic approach performs significantly better than either the augmented neural 

network or the genetic algorithms alone. 
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INTRODUCTION 

 

he task scheduling problem involves scheduling n tasks of a project where they follow a given 

precedence relationship.  Each task requires one unit of a resource for a certain duration (processing 

time), which is task dependent.  The resource could be a machine, labor, CPU, etc. The project faces a 

resource constraint because only a fixed number of units of the resource are available.  It is assumed that preemption 

is not allowed.  Once a task begins, it must reach completion. The objective is to minimize the makespan or the 

project duration.  The task scheduling problem occurs in a variety of situations, ranging from project management to 

distributed computing environments; in fact, it is at the heart of many scheduling problems and has received 

considerable attention in the literature.  For example, Hu (1961), Coffman and Graham (1972), Graham et al. (1979), 

Kasahara and Narita (1984), and Agarwal et al. (2003, 2006) have addressed this problem.   

 

 The task scheduling problem can be mathematically stated as follows: 

 

Minimize Sn+1 

 

Subject to: 

 

                                   (1) 

                      (2) 

             (3) 

 

where n represents the number of tasks in the project, N represents the set of all tasks, di represents the duration or 

the processing time of task i, Si represents the start time of task i, R represents the number of units of the resource 

T 
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available, and A represents the set of arcs or precedence relationships for the project.  P(t) represents the set of tasks 

that are active at time unit t and T represents an upper bound on the project makespan.  |P(t)| represents the 

cardinality of the set P(t) which is the number of active tasks at time t.  In the above mathematical formulation, the 

objective function states that the start time of the (n+1)
st
 task should be minimized.  Because the start time of the 

(n+1)
st
 task is the same as the finish time of the n

th
 or last task in the sequence, this is equivalent to minimizing the 

makespan of the problem.  Constraint set (1) enforces the precedence relationship and processing time requirements. 

It says that if a task i precedes a task j, then the difference in the start times of tasks j and i cannot be less than the 

processing time (or duration) of task i.  Constraint set (2) enforces the resource constraints.  It says that the total 

number of tasks that can be active at a given time cannot exceed the total units of resources available. Lastly, 

constraint set (3) is the non-negativity constraint.  

 

 Like most scheduling problems, the task scheduling problem is NP-Hard in nature (Kasahara and Narita, 

1984) and therefore exact methods for finding the optimal solution are impractical for solving larger instances of the 

problem.  Heuristics and metaheuristics are needed to solve such problems to obtain a near-optimal solution in 

reasonable computational time.  Several heuristics have been proposed for this problem.  See Cooper (1976) and 

Panwalker and Iskander (1977) for a review of heuristics commonly used for similar scheduling problems.  For this 

particular task scheduling problem, the heuristics used most, commonly due to their effectiveness, are:  1) Highest 

Level with Estimated Time First (HLETF), 2)  Critical Path with Most Immediate Successors First (CP/MISF), 3) 

Longest Processing Time First (LPTF), and 4) Earliest Finish Time First (EFTF).  The HLETF and CP/MISF 

heuristics were first proposed in Kasahara and Narita (1984).  All these heuristics were used in Agarwal et al. 

(2003).  In addition to these greedy heuristics, Agarwal et al. (2006) proposed some non-greedy heuristics in which 

some tasks ready to start were made to wait even if resources were available, saving the resources for other more 

critical tasks that might become ready to start soon.   

 

 A number of metaheuristic approaches have also been used for solving this type of problem.  Adams et al. 

(1988) were among the first to propose an iterative (or multi-pass) procedure for solving certain types of scheduling 

problems.  For example, they proposed a shifting bottleneck procedure for the job-shop scheduling problem.  

Hopfield and Tank (1985) proposed a neural network approach for solving combinatorial optimization problems.  

Foo and Takefuji (1988) used Hopfield and Tank’s neural network approach to solve small job-shop scheduling 

problems.  Agarwal et al. (2003) proposed the augmented neural network (AugNN) approach for solving the task 

scheduling problem.  The AugNN approach is a hybrid of both heuristic and iterative neural network approaches.  

The AugNN approach is essentially a non-deterministic local search approach in which the initial solution is 

obtained using a well-known heuristic and then the neighboring solution space is searched iteratively using the 

principles of neural networks.  Agarwal et al. (2006) further improved upon the results of the task scheduling 

problem by incorporating a non-greedy heuristic approach within the AugNN framework.   Genetic algorithms have 

also been used for similar scheduling problems (Alcaraz and Maroto, 2001, Valls et al., 2008).  The genetic 

algorithm approach is more of a global search approach. 

 

 In this paper, a relatively new metaheuristic approach - called NeuroGenetic - is applied to the task 

scheduling problem.  This approach, proposed by Agarwal et al. (2010), is a hybrid of both the AugNN and the 

genetic algorithm (GA) approaches.  It has been applied to the resource constrained project scheduling problem 

(Agarwal et al., 2011) but has not been applied to the task scheduling problem.  The NeuroGenetic approach is 

applied to the same set of problems used in Agarwal et al. (2003) and Agarwal et al. (2006) and shows the 

effectiveness of using this approach compared to using the AugNN or a GA approach alone.  This relatively new 

approach is found to be more effective than either the AugNN or the GA approach alone. 

 

The NeuroGenetic Approach 

 

 As stated earlier, the NeuroGenetic approach is a hybrid of both the AugNN and GA approaches.  In this 

approach, the AugNN iterations are interleaved with GA iterations.  The idea behind interleaving the iterations is to 

take advantage of the strengths of each technique – the AugNN approach is regarded as a good local search 

technique while the GA approach is regarded as a good global search technique.  Interleaving their iterations 

provides a better solution than either of these techniques used alone.  If AugNN is used by itself, for example, the 

initial solution is provided by a heuristic and then AugNN iterations search for solutions in the neighborhood of this 
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initial solution.   Therefore, search in the AugNN approach is limited to a single neighborhood.  When using genetic 

algorithms, several good solutions in different neighborhoods are generated as a set of initial solutions and through 

crossover and mutation, several other solutions are created in various neighborhoods.  By interleaving AugNN 

iterations,  the local neighborhoods of several good solutions are basically searched, thus expanding the search space 

and therefore affording a better chance of finding improved solutions.   

 

 Interleaving the AugNN approach with the GA approach is not straightforward because in the AugNN 

approach, a set of weights of processing elements, in conjunction with a heuristic, determines a solution. The set of 

weights is modified after each iteration, giving rise to a new solution in subsequent iterations.  If AugNN is used by 

itself, it starts with an initial set of weights and proceeds sequentially from iteration to iteration, generating new 

solutions with a new set of weights, where the set of weights in iteration t+1 depends on the set of weights in 

iteration t.   The challenge in interleaving the AugNN approach is to take a solution that did not result from a given 

set of weights and a heuristic and find a subsequent solution in its local neighborhood.  This requires some reverse 

engineering.  That is, given a solution and a heuristic, a set of weights has to first be determined that would give the 

solution (see Agarwal et al., 2010, for details).  This set of weights, generated through a reverse engineering process, 

is then modified so that a new solution in the neighborhood may be generated.  Agarwal et al. (2003) developed the 

AugNN approach that works in conjunction with any greedy heuristics. In this approach, there is one set of weights.  

Using the reverse engineering approach, it is possible to develop a set of weights that would generate a given 

solution using a given greedy heuristic.  Agarwal et al. (2006) developed a modified AugNN approach that can work 

in conjunction with a greedy and a non-greedy heuristic.  In this approach, there are two sets of weights; one set 

works with a greedy heuristic and the other works with a non-greedy heuristic.  Using the reverse engineering 

procedure needed in the NeuroGenetic approach to generate these two sets of weights is not possible, which means 

that the NeuroGenetic approach is limited to utilizing only the greedy heuristic.   

 

 Because reverse engineering to generate two sets of weights is not possible, in this paper the NeuroGenetic 

approach is applied only in conjunction with greedy heuristics and not with non-greedy heuristics.  However,  the 

results will be compared with those obtained by both the greedy heuristics and non-greedy heuristics. 

 

The Problems 

 

 The task scheduling problem can be explained with the help of an instance of a seven-task problem shown 

in Figure 1.  In this problem, N is 7, R is 2 (because there are two units of machines).  The processing times d1, d2, 

…, d7 are written next to each task.  For this problem instance, the precedence relationship is given by  the set of 

arcs A whose elements include (2,1), (3,1), (4,1), (5,2), (6,2), (5,3), (6,3), (7,5), (7,6), (7,4). 
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Figure 1: An Instance of the Task Scheduling Problem 

 

 In Agarwal et al. (2003), a set of 570 problems was generated to test the effectiveness of the AugNN 

approach compared to a single-pass heuristic approach.  The number of tasks used in these problems ranged from 10 

through 100 and the units of resources ranged from 2 through 5.  The processing times were generated randomly 

using a uniform distribution. It was shown that the reduction in gap from the lower bound due to AugNN compared 

to single-pass heuristic ranged from 39% to 59% for various heuristics.  AugNN performed best in conjunction with 

the HLETF heuristic.  The reduction in gap for the HLETF heuristic was 42.5%.  It may be noted that if the heuristic 

is already very good, there is less room for improvement by AugNN.  For some heuristics, even though the 

reduction in the gap was as high as 59%, the net makespans were not the best because the initial solutions were not 

very good to begin with; in other words, the local neighborhood was not the best for a local search.  The least gap 

from the lower bound due to AugNN was 3.3% using the HLETF heuristic.  This dataset will be used for testing 

purposes and it will be called Uniform-03. 

 

 In Agarwal et al. (2006), three new sets of 344 problems each were generated.  Again, the number of tasks 

ranged from 10 through 100 and the number of units of resources ranged from 2 through 5.  In the first set, the 

processing times were generated using a uniform distribution. In the second set, the processing times were generated 

using a normal distribution.  In the third set, they were generated using an exponential distribution.  The percent 

gaps due to AugNN for the three datasets were 1.98%, 2.07% and 1.79%, respectively.  The best results were in 

conjunction with the HLETF greedy heuristic and a non-greedy heuristic.  In this study, the authors use these three 

datasets as well – called Uniform-06, Normal-06 and Exponential-06 - to test the NeuroGenetic approach.  In all, 

four datasets will be used to test the effectiveness of the NeuroGenetic approach. 

 

Computational Experience 

 

 The NeuroGenetic approach was coded in Visual Basic.Net (2010) and applied to the four datasets 

discussed earlier.  The best single-pass heuristic for the task scheduling problem in the literature is the Highest Level 

with Estimated Time First (HLETF).  In this study, only this best heuristic is used in conjunction with the 

NeuroGenetic Approach.  Table 1 shows the results of the AugNN alone using the greedy heuristic, the AugNN 

alone with the greedy and the non-greedy heuristic, and the GA approach alone, in addition to the NeuroGenetic 

approach.  The table shows the results for the four datasets (Uniform-03, Uniform-06, Normal-06 and Exponential-

06) individually and also a total of these four datasets for the various approaches.  The total or aggregate lower 

bound (assuming infinite resources) for all the problems for each dataset, the aggregate makespan of all the 

problems in each dataset for the various approaches, the gaps from the lower bound, and the percent gaps from the 
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lower bound are also reported.  The HLETF heuristic produced solutions with an overall gap of 3.51% from the 

lower bound.  The AugNN approach, used in conjunction with the HLETF heuristic, reduced the gap from 3.51% to 

2.21%.  Of course, this reduction came at a cost of some extra CPU time, as shown below.  The AugNN approach, 

used in conjunction with the HLETF heuristic and a non-greedy heuristic, reduced the gap further down to 1.96%.  

Genetic algorithms, by themselves, using the HLETF heuristic to produce the first solution in the initial population, 

produced solutions with a gap of 1.69%.  The NeuroGenetic approach produced the best solutions of any approach 

with an overall gap of 1.37%.  With metaheuristics, one can run them arbitrarily for a very long time.  Typically, 

some type of stopping criteria needs to be used.  The stopping criteria used is to find 1,000 unique solutions or run 

5,000 iterations, whichever comes first.  For smaller problems, it is difficult to find 1,000 unique solutions, therefore 

the stopping criteria was 5,000 iterations.  Larger problems are able to find 1,000 unique solutions easily.  When 

using either the AugNN or GA approach alone or the NeuroGenetic approach, 1,000 unique solutions were produced 

to keep the comparison reasonable. 

 
Table 1:  Makespans, Gaps and Percent Gaps for Various Approaches for the Four Datasets 

Problem Set 
I 

(Uniform-03) 

II 

(Uniform-06) 

III 

(Normal-06) 

IV 

(Exponential-06) 
Total 

Number of Problems 570 344 344 344 1,602 

Lower Bound 87,190 142,490 56,804 149,672 436,156 

Heuristic Alone (HLETF) 92,311 146,794 58,585 153,781 451,471 

Augnn Alone 

with HLETF Heuristc 
90,136 145,312 57,981 152,355 445,784 

Augnn Alone with HLETF 

and A Non-Greedy Heuristic 
89,654 145,011 57,944 152,076 444,685 

GA Alone 

(1,000 Unique Solns) 
89,267 144,856 57,735 151,652 443,510 

Neurogenetic 

(1,000 Unique Solutions) 
88,826 144,478 57,534 151,273 442,111 

Gap with Heuristic Alone 

(HLETF Heuristic) 
5,121 4,304 1,781 4,109 15,345 

Gap with Augnn Alone 

(Greedy Heuristic Only) 
2,946 2,822 1,177 2,683 9,628 

Gap with Augnn Only 

(Greedy and Non-Greedy 

Heuristics) 

2,464 2,521 1,140 2,404 8,529 

Gap with GA Alone (1,000 

Unique Solutions) 
2,077 2,366 931 1,980 7,354 

Gap with Neurogenetic 

Approach (1,000 Unique 

Solutions) 

1,636 1,988 730 1,601 5,955 

Percent Gap with Heuristic 

Alone (HLETF Heuristic) 
5.87 3.02 3.14 2.75 3.51 

Percent Gap with Augnn 

Alone (Greedy Heuristic 

Only) 

3.38 1.98 2.07 1.79 2.21 

Percent Gap with Augnn 

Alone (Greedy and Non-

Greedy) 

2.83 1.77 2.01 1.61 1.96 

Percent Gap with GA Alone 

(1,000 Unique Solutions) 
2.38 1.66 1.64 1.32 1.69 

Percent Gap with 

Neurogenetic Approach 

(1,000 Unique Solutions) 

1.88 1.40 1.29 1.07 1.37 

 

 Table 2 shows the CPU times for each dataset for each approach.  In terms of CPU time consumption, the 

AugNN was the most time consuming.  Genetic Algorithms consumed much less time than AugNN and 

NeuroGenetic approaches.  The NeuroGenetic approach consumed slightly more time than Genetic Algorithms but 

significantly less than AugNN.  This is because roughly 80% of iterations were performed using the GA approach 
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and only 20% using AugNN approach, so the CPU time was weighted higher by GA iterations, which are less time 

consuming than AugNN approaches.  In absolute terms, the CPU times per problem were not very significant – 2.23 

seconds for NeuroGenetic, 1.8 seconds for GA, and 4.15 seconds for AugNN. 

 
Table 2:  CPU Times For All Four Datasets For The Various Approaches 

Problem Set 
I 

(Uniform-03) 

II 

(Uniform-06) 

III 

(Normal-06) 

IV 

(Exponential-06) 
Total 

Per 

Problem 

Number of Problems 570 344 344 344 1,602  

Heuristic Alone 

(HLETF) 
20 14 12 14 60 0.037 

Augnn Alone with 

HLETF Heuristc 
1995 1669 1557 1681 6,902 4.308 

Augnn Alone with 

HLETF and A Non-

Greedy Heuristic 

1909 1614 1532 1606 6,661 4.158 

GA Alone 

(1,000 Unique Solns) 
936 652 620 678 2,886 1.801 

Neurogenetic (1,000 

Unique Solutions) 
1125 824 798 841 3,588 2.239 

 

 A pair-wise comparison of the makespans over all 1,602 problems, and for each of the four datasets 

individually, showed that the NeuroGenetic approach was statistically highly significantly better than the Genetic 

Algorithm alone, with a p-value of < 0.001.  It was also better than AugNN alone with a p-value of < 0.0001.  Pair-

wise comparison to compare AugNN vs. heuristic approach was also performed.  The AugNN with greedy approach 

was better than the heuristic approach with a p-value of < 0.0001.  AugNN using greedy and non-greedy heuristics 

was better than AugNN with greedy alone with a p-value of < 0.01.  The GA was better than AugNN with greedy 

and non-greedy with a p-value of < 0.01.  These results clearly demonstrate the effectiveness of the NeuroGenetic 

approach over other approaches for this type of scheduling problem. 

 
Table 3:  P-Values of Pairwise Comparison of Various Approaches 

Problem Set 
I 

(Uniform-03) 

II 

(Uniform-06) 

III 

(Normal-06) 

IV 

(Exponential-06) 
Total 

Number of Problems 570 344 344 344 1,602 

AugNN with HLETF heuristic  

Vs. Heuristic alone (HLETF) 
< 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

AugNN with HLETF and Non-

greedy Heuristic Vs. AugNN 

with HLETF 

< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 

GA Alone Vs.AugNN with 

HLETF and A Non-greedy 

Heuristic 

< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 

NeuroGenetic Vs. GA < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

NeuroGenetic vs. AugNN  < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

 

SUMMARY AND CONCLUSIONS 

 

 In this paper, the NeuroGenetic approach is applied to the well-known task scheduling problem. The 

NeuroGenetic approach is a hybrid of both the Augmented Neural Network (AugNN) and Genetic Algorithm (GA) 

approaches.  The AugNN approach is itself a hybrid of a heuristic approach and a neural network approach.  Both 

AugNN and GA approaches are iterative approaches.  In the NeuroGenetic approach, the AugNN iterations are 

interleaved with GA iterations.  Since the AugNN approach performs a local search and the GA approach performs a 

global search, the NeuroGenetic approach provides the best of both worlds.  With just slightly more CPU time than 

the GA approach and much less CPU time than the AugNN approach, it provides improved solution quality over 

both the AugNN and the GA approach alone.  These approaches are tested on four different datasets which 

combined represent over 1,600 problems from the literature, ranging in size from 10 tasks to 100 tasks.  The 

algorithms were coded for these approaches in Visual Basic.Net 2010.  For each of the datasets and for all datasets 
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combined, the results showed that the NeuroGenetic approach performed significantly better than either the AugNN 

or the GA approach alone.   
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