
Journal of Business & Economics Research – Fourth Quarter 2014 Volume 12, Number 4

Copyright by author(s); CC-BY 327 The Clute Institute

The Task Scheduling Problem:

A NeuroGenetic Approach
Anurag Agarwal, University of South Florida, Sarasota, USA

Selcuk Colak, Cukurova University, Adana, Turkey

Jason Deane, Virginia Tech, USA

Terry Rakes, Virginia Tech, USA

ABSTRACT

This paper addresses the task scheduling problem which involves minimizing the makespan in

scheduling n tasks on m machines (resources) where the tasks follow a precedence relation and

preemption is not allowed. The machines (resources) are all identical and a task needs only one

machine for processing. Like most scheduling problems, this one is NP-hard in nature, making it

difficult to find exact solutions for larger problems in reasonable computational time. Heuristic

and metaheuristic approaches are therefore needed to solve this type of problem.

This paper proposes a metaheuristic approach - called NeuroGenetic - which is a combination of

an augmented neural network and a genetic algorithm. The augmented neural network approach

is itself a hybrid of a heuristic approach and a neural network approach. The NeuroGenetic

approach is tested against some popular test problems from the literature, and the results indicate

that the NeuroGenetic approach performs significantly better than either the augmented neural

network or the genetic algorithms alone.

Keywords: Scheduling; Genetic Algorithms; Augmented Neural Networks; NeuroGenetic Approach

INTRODUCTION

he task scheduling problem involves scheduling n tasks of a project where they follow a given

precedence relationship. Each task requires one unit of a resource for a certain duration (processing

time), which is task dependent. The resource could be a machine, labor, CPU, etc. The project faces a

resource constraint because only a fixed number of units of the resource are available. It is assumed that preemption

is not allowed. Once a task begins, it must reach completion. The objective is to minimize the makespan or the

project duration. The task scheduling problem occurs in a variety of situations, ranging from project management to

distributed computing environments; in fact, it is at the heart of many scheduling problems and has received

considerable attention in the literature. For example, Hu (1961), Coffman and Graham (1972), Graham et al. (1979),

Kasahara and Narita (1984), and Agarwal et al. (2003, 2006) have addressed this problem.

 The task scheduling problem can be mathematically stated as follows:

Minimize Sn+1

Subject to:

 (1)

 (2)

 (3)

where n represents the number of tasks in the project, N represents the set of all tasks, di represents the duration or

the processing time of task i, Si represents the start time of task i, R represents the number of units of the resource

T

http://creativecommons.org/licenses/by/3.0/
http://www.cluteinstitute.com/

Journal of Business & Economics Research – Fourth Quarter 2014 Volume 12, Number 4

Copyright by author(s); CC-BY 328 The Clute Institute

available, and A represents the set of arcs or precedence relationships for the project. P(t) represents the set of tasks

that are active at time unit t and T represents an upper bound on the project makespan. |P(t)| represents the

cardinality of the set P(t) which is the number of active tasks at time t. In the above mathematical formulation, the

objective function states that the start time of the (n+1)
st
 task should be minimized. Because the start time of the

(n+1)
st
 task is the same as the finish time of the n

th
 or last task in the sequence, this is equivalent to minimizing the

makespan of the problem. Constraint set (1) enforces the precedence relationship and processing time requirements.

It says that if a task i precedes a task j, then the difference in the start times of tasks j and i cannot be less than the

processing time (or duration) of task i. Constraint set (2) enforces the resource constraints. It says that the total

number of tasks that can be active at a given time cannot exceed the total units of resources available. Lastly,

constraint set (3) is the non-negativity constraint.

 Like most scheduling problems, the task scheduling problem is NP-Hard in nature (Kasahara and Narita,

1984) and therefore exact methods for finding the optimal solution are impractical for solving larger instances of the

problem. Heuristics and metaheuristics are needed to solve such problems to obtain a near-optimal solution in

reasonable computational time. Several heuristics have been proposed for this problem. See Cooper (1976) and

Panwalker and Iskander (1977) for a review of heuristics commonly used for similar scheduling problems. For this

particular task scheduling problem, the heuristics used most, commonly due to their effectiveness, are: 1) Highest

Level with Estimated Time First (HLETF), 2) Critical Path with Most Immediate Successors First (CP/MISF), 3)

Longest Processing Time First (LPTF), and 4) Earliest Finish Time First (EFTF). The HLETF and CP/MISF

heuristics were first proposed in Kasahara and Narita (1984). All these heuristics were used in Agarwal et al.

(2003). In addition to these greedy heuristics, Agarwal et al. (2006) proposed some non-greedy heuristics in which

some tasks ready to start were made to wait even if resources were available, saving the resources for other more

critical tasks that might become ready to start soon.

 A number of metaheuristic approaches have also been used for solving this type of problem. Adams et al.

(1988) were among the first to propose an iterative (or multi-pass) procedure for solving certain types of scheduling

problems. For example, they proposed a shifting bottleneck procedure for the job-shop scheduling problem.

Hopfield and Tank (1985) proposed a neural network approach for solving combinatorial optimization problems.

Foo and Takefuji (1988) used Hopfield and Tank’s neural network approach to solve small job-shop scheduling

problems. Agarwal et al. (2003) proposed the augmented neural network (AugNN) approach for solving the task

scheduling problem. The AugNN approach is a hybrid of both heuristic and iterative neural network approaches.

The AugNN approach is essentially a non-deterministic local search approach in which the initial solution is

obtained using a well-known heuristic and then the neighboring solution space is searched iteratively using the

principles of neural networks. Agarwal et al. (2006) further improved upon the results of the task scheduling

problem by incorporating a non-greedy heuristic approach within the AugNN framework. Genetic algorithms have

also been used for similar scheduling problems (Alcaraz and Maroto, 2001, Valls et al., 2008). The genetic

algorithm approach is more of a global search approach.

 In this paper, a relatively new metaheuristic approach - called NeuroGenetic - is applied to the task

scheduling problem. This approach, proposed by Agarwal et al. (2010), is a hybrid of both the AugNN and the

genetic algorithm (GA) approaches. It has been applied to the resource constrained project scheduling problem

(Agarwal et al., 2011) but has not been applied to the task scheduling problem. The NeuroGenetic approach is

applied to the same set of problems used in Agarwal et al. (2003) and Agarwal et al. (2006) and shows the

effectiveness of using this approach compared to using the AugNN or a GA approach alone. This relatively new

approach is found to be more effective than either the AugNN or the GA approach alone.

The NeuroGenetic Approach

 As stated earlier, the NeuroGenetic approach is a hybrid of both the AugNN and GA approaches. In this

approach, the AugNN iterations are interleaved with GA iterations. The idea behind interleaving the iterations is to

take advantage of the strengths of each technique – the AugNN approach is regarded as a good local search

technique while the GA approach is regarded as a good global search technique. Interleaving their iterations

provides a better solution than either of these techniques used alone. If AugNN is used by itself, for example, the

initial solution is provided by a heuristic and then AugNN iterations search for solutions in the neighborhood of this

http://creativecommons.org/licenses/by/3.0/
http://www.cluteinstitute.com/

Journal of Business & Economics Research – Fourth Quarter 2014 Volume 12, Number 4

Copyright by author(s); CC-BY 329 The Clute Institute

initial solution. Therefore, search in the AugNN approach is limited to a single neighborhood. When using genetic

algorithms, several good solutions in different neighborhoods are generated as a set of initial solutions and through

crossover and mutation, several other solutions are created in various neighborhoods. By interleaving AugNN

iterations, the local neighborhoods of several good solutions are basically searched, thus expanding the search space

and therefore affording a better chance of finding improved solutions.

 Interleaving the AugNN approach with the GA approach is not straightforward because in the AugNN

approach, a set of weights of processing elements, in conjunction with a heuristic, determines a solution. The set of

weights is modified after each iteration, giving rise to a new solution in subsequent iterations. If AugNN is used by

itself, it starts with an initial set of weights and proceeds sequentially from iteration to iteration, generating new

solutions with a new set of weights, where the set of weights in iteration t+1 depends on the set of weights in

iteration t. The challenge in interleaving the AugNN approach is to take a solution that did not result from a given

set of weights and a heuristic and find a subsequent solution in its local neighborhood. This requires some reverse

engineering. That is, given a solution and a heuristic, a set of weights has to first be determined that would give the

solution (see Agarwal et al., 2010, for details). This set of weights, generated through a reverse engineering process,

is then modified so that a new solution in the neighborhood may be generated. Agarwal et al. (2003) developed the

AugNN approach that works in conjunction with any greedy heuristics. In this approach, there is one set of weights.

Using the reverse engineering approach, it is possible to develop a set of weights that would generate a given

solution using a given greedy heuristic. Agarwal et al. (2006) developed a modified AugNN approach that can work

in conjunction with a greedy and a non-greedy heuristic. In this approach, there are two sets of weights; one set

works with a greedy heuristic and the other works with a non-greedy heuristic. Using the reverse engineering

procedure needed in the NeuroGenetic approach to generate these two sets of weights is not possible, which means

that the NeuroGenetic approach is limited to utilizing only the greedy heuristic.

 Because reverse engineering to generate two sets of weights is not possible, in this paper the NeuroGenetic

approach is applied only in conjunction with greedy heuristics and not with non-greedy heuristics. However, the

results will be compared with those obtained by both the greedy heuristics and non-greedy heuristics.

The Problems

 The task scheduling problem can be explained with the help of an instance of a seven-task problem shown

in Figure 1. In this problem, N is 7, R is 2 (because there are two units of machines). The processing times d1, d2,

…, d7 are written next to each task. For this problem instance, the precedence relationship is given by the set of

arcs A whose elements include (2,1), (3,1), (4,1), (5,2), (6,2), (5,3), (6,3), (7,5), (7,6), (7,4).

http://creativecommons.org/licenses/by/3.0/
http://www.cluteinstitute.com/

Journal of Business & Economics Research – Fourth Quarter 2014 Volume 12, Number 4

Copyright by author(s); CC-BY 330 The Clute Institute

6

T1

T2 T3 T4

T5 T6

T7 M1 M2

1

1

2

3 7 4

Figure 1: An Instance of the Task Scheduling Problem

 In Agarwal et al. (2003), a set of 570 problems was generated to test the effectiveness of the AugNN

approach compared to a single-pass heuristic approach. The number of tasks used in these problems ranged from 10

through 100 and the units of resources ranged from 2 through 5. The processing times were generated randomly

using a uniform distribution. It was shown that the reduction in gap from the lower bound due to AugNN compared

to single-pass heuristic ranged from 39% to 59% for various heuristics. AugNN performed best in conjunction with

the HLETF heuristic. The reduction in gap for the HLETF heuristic was 42.5%. It may be noted that if the heuristic

is already very good, there is less room for improvement by AugNN. For some heuristics, even though the

reduction in the gap was as high as 59%, the net makespans were not the best because the initial solutions were not

very good to begin with; in other words, the local neighborhood was not the best for a local search. The least gap

from the lower bound due to AugNN was 3.3% using the HLETF heuristic. This dataset will be used for testing

purposes and it will be called Uniform-03.

 In Agarwal et al. (2006), three new sets of 344 problems each were generated. Again, the number of tasks

ranged from 10 through 100 and the number of units of resources ranged from 2 through 5. In the first set, the

processing times were generated using a uniform distribution. In the second set, the processing times were generated

using a normal distribution. In the third set, they were generated using an exponential distribution. The percent

gaps due to AugNN for the three datasets were 1.98%, 2.07% and 1.79%, respectively. The best results were in

conjunction with the HLETF greedy heuristic and a non-greedy heuristic. In this study, the authors use these three

datasets as well – called Uniform-06, Normal-06 and Exponential-06 - to test the NeuroGenetic approach. In all,

four datasets will be used to test the effectiveness of the NeuroGenetic approach.

Computational Experience

 The NeuroGenetic approach was coded in Visual Basic.Net (2010) and applied to the four datasets

discussed earlier. The best single-pass heuristic for the task scheduling problem in the literature is the Highest Level

with Estimated Time First (HLETF). In this study, only this best heuristic is used in conjunction with the

NeuroGenetic Approach. Table 1 shows the results of the AugNN alone using the greedy heuristic, the AugNN

alone with the greedy and the non-greedy heuristic, and the GA approach alone, in addition to the NeuroGenetic

approach. The table shows the results for the four datasets (Uniform-03, Uniform-06, Normal-06 and Exponential-

06) individually and also a total of these four datasets for the various approaches. The total or aggregate lower

bound (assuming infinite resources) for all the problems for each dataset, the aggregate makespan of all the

problems in each dataset for the various approaches, the gaps from the lower bound, and the percent gaps from the

http://creativecommons.org/licenses/by/3.0/
http://www.cluteinstitute.com/

Journal of Business & Economics Research – Fourth Quarter 2014 Volume 12, Number 4

Copyright by author(s); CC-BY 331 The Clute Institute

lower bound are also reported. The HLETF heuristic produced solutions with an overall gap of 3.51% from the

lower bound. The AugNN approach, used in conjunction with the HLETF heuristic, reduced the gap from 3.51% to

2.21%. Of course, this reduction came at a cost of some extra CPU time, as shown below. The AugNN approach,

used in conjunction with the HLETF heuristic and a non-greedy heuristic, reduced the gap further down to 1.96%.

Genetic algorithms, by themselves, using the HLETF heuristic to produce the first solution in the initial population,

produced solutions with a gap of 1.69%. The NeuroGenetic approach produced the best solutions of any approach

with an overall gap of 1.37%. With metaheuristics, one can run them arbitrarily for a very long time. Typically,

some type of stopping criteria needs to be used. The stopping criteria used is to find 1,000 unique solutions or run

5,000 iterations, whichever comes first. For smaller problems, it is difficult to find 1,000 unique solutions, therefore

the stopping criteria was 5,000 iterations. Larger problems are able to find 1,000 unique solutions easily. When

using either the AugNN or GA approach alone or the NeuroGenetic approach, 1,000 unique solutions were produced

to keep the comparison reasonable.

Table 1: Makespans, Gaps and Percent Gaps for Various Approaches for the Four Datasets

Problem Set
I

(Uniform-03)

II

(Uniform-06)

III

(Normal-06)

IV

(Exponential-06)
Total

Number of Problems 570 344 344 344 1,602

Lower Bound 87,190 142,490 56,804 149,672 436,156

Heuristic Alone (HLETF) 92,311 146,794 58,585 153,781 451,471

Augnn Alone

with HLETF Heuristc
90,136 145,312 57,981 152,355 445,784

Augnn Alone with HLETF

and A Non-Greedy Heuristic
89,654 145,011 57,944 152,076 444,685

GA Alone

(1,000 Unique Solns)
89,267 144,856 57,735 151,652 443,510

Neurogenetic

(1,000 Unique Solutions)
88,826 144,478 57,534 151,273 442,111

Gap with Heuristic Alone

(HLETF Heuristic)
5,121 4,304 1,781 4,109 15,345

Gap with Augnn Alone

(Greedy Heuristic Only)
2,946 2,822 1,177 2,683 9,628

Gap with Augnn Only

(Greedy and Non-Greedy

Heuristics)

2,464 2,521 1,140 2,404 8,529

Gap with GA Alone (1,000

Unique Solutions)
2,077 2,366 931 1,980 7,354

Gap with Neurogenetic

Approach (1,000 Unique

Solutions)

1,636 1,988 730 1,601 5,955

Percent Gap with Heuristic

Alone (HLETF Heuristic)
5.87 3.02 3.14 2.75 3.51

Percent Gap with Augnn

Alone (Greedy Heuristic

Only)

3.38 1.98 2.07 1.79 2.21

Percent Gap with Augnn

Alone (Greedy and Non-

Greedy)

2.83 1.77 2.01 1.61 1.96

Percent Gap with GA Alone

(1,000 Unique Solutions)
2.38 1.66 1.64 1.32 1.69

Percent Gap with

Neurogenetic Approach

(1,000 Unique Solutions)

1.88 1.40 1.29 1.07 1.37

 Table 2 shows the CPU times for each dataset for each approach. In terms of CPU time consumption, the

AugNN was the most time consuming. Genetic Algorithms consumed much less time than AugNN and

NeuroGenetic approaches. The NeuroGenetic approach consumed slightly more time than Genetic Algorithms but

significantly less than AugNN. This is because roughly 80% of iterations were performed using the GA approach

http://creativecommons.org/licenses/by/3.0/
http://www.cluteinstitute.com/

Journal of Business & Economics Research – Fourth Quarter 2014 Volume 12, Number 4

Copyright by author(s); CC-BY 332 The Clute Institute

and only 20% using AugNN approach, so the CPU time was weighted higher by GA iterations, which are less time

consuming than AugNN approaches. In absolute terms, the CPU times per problem were not very significant – 2.23

seconds for NeuroGenetic, 1.8 seconds for GA, and 4.15 seconds for AugNN.

Table 2: CPU Times For All Four Datasets For The Various Approaches

Problem Set
I

(Uniform-03)

II

(Uniform-06)

III

(Normal-06)

IV

(Exponential-06)
Total

Per

Problem

Number of Problems 570 344 344 344 1,602

Heuristic Alone

(HLETF)
20 14 12 14 60 0.037

Augnn Alone with

HLETF Heuristc
1995 1669 1557 1681 6,902 4.308

Augnn Alone with

HLETF and A Non-

Greedy Heuristic

1909 1614 1532 1606 6,661 4.158

GA Alone

(1,000 Unique Solns)
936 652 620 678 2,886 1.801

Neurogenetic (1,000

Unique Solutions)
1125 824 798 841 3,588 2.239

 A pair-wise comparison of the makespans over all 1,602 problems, and for each of the four datasets

individually, showed that the NeuroGenetic approach was statistically highly significantly better than the Genetic

Algorithm alone, with a p-value of < 0.001. It was also better than AugNN alone with a p-value of < 0.0001. Pair-

wise comparison to compare AugNN vs. heuristic approach was also performed. The AugNN with greedy approach

was better than the heuristic approach with a p-value of < 0.0001. AugNN using greedy and non-greedy heuristics

was better than AugNN with greedy alone with a p-value of < 0.01. The GA was better than AugNN with greedy

and non-greedy with a p-value of < 0.01. These results clearly demonstrate the effectiveness of the NeuroGenetic

approach over other approaches for this type of scheduling problem.

Table 3: P-Values of Pairwise Comparison of Various Approaches

Problem Set
I

(Uniform-03)

II

(Uniform-06)

III

(Normal-06)

IV

(Exponential-06)
Total

Number of Problems 570 344 344 344 1,602

AugNN with HLETF heuristic

Vs. Heuristic alone (HLETF)
< 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

AugNN with HLETF and Non-

greedy Heuristic Vs. AugNN

with HLETF

< 0.01 < 0.01 < 0.01 < 0.01 < 0.01

GA Alone Vs.AugNN with

HLETF and A Non-greedy

Heuristic

< 0.01 < 0.01 < 0.01 < 0.01 < 0.01

NeuroGenetic Vs. GA < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

NeuroGenetic vs. AugNN < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

SUMMARY AND CONCLUSIONS

 In this paper, the NeuroGenetic approach is applied to the well-known task scheduling problem. The

NeuroGenetic approach is a hybrid of both the Augmented Neural Network (AugNN) and Genetic Algorithm (GA)

approaches. The AugNN approach is itself a hybrid of a heuristic approach and a neural network approach. Both

AugNN and GA approaches are iterative approaches. In the NeuroGenetic approach, the AugNN iterations are

interleaved with GA iterations. Since the AugNN approach performs a local search and the GA approach performs a

global search, the NeuroGenetic approach provides the best of both worlds. With just slightly more CPU time than

the GA approach and much less CPU time than the AugNN approach, it provides improved solution quality over

both the AugNN and the GA approach alone. These approaches are tested on four different datasets which

combined represent over 1,600 problems from the literature, ranging in size from 10 tasks to 100 tasks. The

algorithms were coded for these approaches in Visual Basic.Net 2010. For each of the datasets and for all datasets

http://creativecommons.org/licenses/by/3.0/
http://www.cluteinstitute.com/

Journal of Business & Economics Research – Fourth Quarter 2014 Volume 12, Number 4

Copyright by author(s); CC-BY 333 The Clute Institute

combined, the results showed that the NeuroGenetic approach performed significantly better than either the AugNN

or the GA approach alone.

AUTHOR INFORMATION

Anurag Agarwal is a Professor in the Department of Information Systems and Decision Sciences at University of

South Florida, Sarasota, Florida, USA. He earned his Ph.D. from The Ohio State University, Columbus, Ohio, USA

(1993) and an MBA from the University of Wisconsin, La Crosse, Wisconsin, USA (1988). He teaches a variety of

courses in Information Systems and Statistics and Operations Management, both at the undergraduate and graduate

levels. His primary research interests are in heuristics and metaheuristics for various optimization problems.

Selcuk Colak is an Associate Professor in the Department of Business at the Cukurova University, Adana, Turkey.

His current research interests are heuristics and metaheuristics, genetic algorithms, neural networks, project and

machine scheduling, and distribution planning. He teaches Operations Management, Project Management and

Logistics Management courses at both undergraduate and graduate levels. Professor Colak received his B.S. degree

in Electrical and Electronics Engineering from the Cukurova University, Adana, Turkey, in 1997 and received his

M.S. in Electrical and Computer Engineering and his Ph.D. in Information Systems and Operations Management

from the University of Florida, USA, in 2000 and 2006, respectively.

Jason Deane is an Associate Professor in the Department of Business Information Technology in the Pamplin

College of Business at Virginia Polytechnic Institute & State University, USA. He received his Ph.D. in Information

Systems and Operations Management from the University of Florida, USA, and an M.B.A. and B.S. in Business

Administration from Virginia Tech, USA. His current research interests are in the areas of supply chain

management, artificial intelligence, computer-aided decision support systems, information system security, large-

scale optimization and information retrieval. His teaching interests are in Operations Management and Information

Systems.

Terry R. Rakes is William and Alix Houchens Professor of Information Technology at Virginia Tech. He received

his Ph.D. in Management Science, M.B.A., and B.S.I.E. from Virginia Tech. His research interests are in analytics

and big data analysis, text and data mining, geographic information systems, disaster planning and logistics,

information security, and the application of decision support and artificial intelligence methodologies. He has

published in Management Science, Decision Sciences, Decision Support Systems, Annals of Operations Research,

OMEGA, European Journal of OR, Operations Research Letters, Information and Management, Journal of

Information Science, and others.

REFERENCES

1. Alcaraz J. & Maroto C. (2001). A robust genetic algorithm for resource allocation in project scheduling.

Annals of Operations Research, 102, 83–109.

2. Adams, J., Balas, E., & Zawack, D. (1988). The shifting bottleneck procedures for job shop scheduling.

Management Science, 34 (3), 391-401.

3. Agarwal, A., Jacob, V.S., & Pirkul, H. (2003). Augmented neural networks for task scheduling. European

Journal of Operational Research, 151, 481-502.

4. Agarwal, A., Jacob, V., & Pirkul, H. (2006). An Improved Augmented Neural-Networks Approach for

Scheduling Problems. INFORMS Journal on Computing, 18(1), 119-128.

5. Agarwal, A., Colak, S., & Deane, J. (2010). NeuroGenetic Approach for Combinatorial Optimization: An

Exploratory Analysis. Annals of Operations Research, 74(1), 185-199.

6. Agarwal, A., Colak, S., & Erenguc, S.S. (2011). A Neurogenetic Approach for the Resource-Constrained

Project Scheduling Problem. Computers and Operations Research, 38, 44-50.

7. Coffman, E.G. & Graham, R.L. (2000). Optimal scheduling for two-processor systems. Acta Informatica,

1, 200-213.

8. Cooper D. F. (1976). Heuristics for scheduling resource–constrained projects: An experimental

http://creativecommons.org/licenses/by/3.0/
http://www.cluteinstitute.com/

Journal of Business & Economics Research – Fourth Quarter 2014 Volume 12, Number 4

Copyright by author(s); CC-BY 334 The Clute Institute

investigation. Management Science, 22, 1186–1194.

9. Foo, Y.P.S. & Takefuji, Y. (1988). Stochastic neural networks for solving job-shop scheduling: Part 1,

problem representation. Proceedings of Joint International Conference on Neural Networks, 2, 275-282.

10. Graham, R.L., Lawler, E.L., Lenstra, J.K., & Rinnooy Kan, A.H.G. (1979). Optimization and

approximation in deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics, 5,

287-326.

11. Hopfield, J.J. & Tank, D.W. (1985). Neural computation of decisions in optimization problems, Biological

Cybernetics, 52, 141-152.

12. Hu, T.C. (1961). Parallel sequencing and assembly line problem. Operations Research, 9, 841-848.

13. Kasahara, H. & Narita, S. (1984). Practical multiprocessor scheduling algorithms for efficient parallel

processing. IEEE Transactions on Computers, C-33, 11, 1023-1029.

14. Panwalker, S.S. & Iskander, W. (1977). A Survey of Scheduling Rules. Operations Research, 25, 45-61.

15. Valls V., Ballestin F., & Quintanilla M. S. (2008). A hybrid genetic algorithm for the resource constrained

project scheduling problem. European Journal of Operational Research, 185, 495-508.

http://creativecommons.org/licenses/by/3.0/
http://www.cluteinstitute.com/

