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Abstract

	 Internet popularity is at an all time high. This phenomenon 
continues to drive enormous revenue growth for the online 
advertising industry. One of the difficult challenges facing this 
industry is determining how to schedule online advertisements. 
We extend prior research in this area by developing a quantitative 
model which incorporates a very important economic strategy, 
volume pricing discounts. In addition, motivated by the NP-Hard 
nature of the problem, we propose and test a several heuristic 
and metaheuristic solution approaches. We show that explicit 
consideration of this economic pricing strategy in the scheduling 
process can, under certain elasticity of demand assumptions, 
significantly improve the revenue generation ability of online ad 
publishers. This provides significant support for the proposed 
model.
	 Key Words: Scheduling, Pricing Discounts, Optimization, 
Heuristics, Non-Linear Pricing

1. Introduction and Background

	 According to a recent Price Waterhouse Coopers/Interactive 
Advertising Bureau (IAB) report, revenues for the online 
advertising industry in 2011 was $ 31 billion, which represented 
an approximately 22% increase over prior year revenues [9]. 
Further, online advertisement revenues have been growing at 
an average of roughly 20% per year for the past several years. 
Online advertisement revenues are also growing as a proportion 
of all advertisement revenues from all channels (including 
television, radio and newspaper). In 2011, online advertisement 
revenues represented almost 25% of all advertising revenues, 
up from approximately 19% in 2009 [9]. This growing trend is 
expected to continue in the future as Internet popularity pushes 
companies to channel more of their advertising dollars toward 
the online medium. Online advertisements take several different 
forms including search based text ads, classified and directory 
ads, rich media, banner ads, digital video commercials, pop ups 
etc. Search based text ads account for roughly 45% of all online 
ad revenues. Banner ads are rank second in popularity of use, 
accounting for approximately 22% of all online ad revenues. For 
example in 2011, banner ad revenues accounted for 6.8 billion 
dollars (approximately 22% of the total industry revenues of 31 
billion). 
	 Developing a revenue optimizing banner advertisement 
schedule given the limited advertising space available is a 
challenging problem which has received considerable attention 
in the literature [1, 2, 4, 5, 6, 10, 11]. Adler et al. [1] first 
proposed the MaxSpace model, which is essentially an integer 
programming formulation to schedule banner ads to maximize 
the utilization of available space. This model, given their linear 
pricing assumption, also maximizes revenue. Adler et al. also 

assumed a fixed display frequency display, i.e. either all or
none of the requested frequency of ads, for a given advertise-
ment, are displayed. Dawande et al. [4] and Kumar et al. [10,
11] discussed various complexity issues associated with the 
MaxSpace problem and showed that the problem is NP-Hard
in nature. In addition, they proposed Genetic Algorithms to 
solve the problem. Amiri and Menon [2] extended the original 
MaxSpace problem to include multiple display frequencies 
as opposed to fixed display frequencies. Deane and Agarwal 
[6] further extended the work to incorporate variable display 
frequencies which incorporated for each ad a lower and an up-
per bound of display. In addition, they demonstrated that by
using variable display frequencies, the space utilization and
hence the revenue therefrom is higher. They call their model 
the VF-MaxSpace model. Deane [5] developed a model that 
incorporates contextual ad targeting. Regardless of the volume 
of advertisements requested for a particular ad, all these proposed 
models assume a linear pricing structure. This limits their 
applicability in industry as most companies offer volume based 
discounts in an effort to improve their ability to compete for the
high volume advertisers. 
	 Major online advertising companies, such as Google, Yahoo, 
AOL and Facebook have adopted business models largely
driven by the generation of revenue through their online 
advertisement publishing efforts. These companies are constantly 
competing for the same advertising customers. One way 
organizations commonly compete in any competitive industry 
is through their pricing strategies, particularly through offering 
quantity discounts to attract large volume customers. Yet the
current models in the literature on online advertisement scheduling 
do not address such non-linear pricing strategies and are hence 
deficient in their applicability to the real-world scheduling
needs of online advertising companies. In this study we fill this
gap by extending Deane and Agarwal’s [6] VF-MaxSpace model
to incorporate a non-linear objective function to incorporate
quantity discounts. 
	 In Section 2, we discuss the economics of the quantity dis-
count pricing strategy to motivate the proposed non-linear ad 
scheduling model. In Section 3, we describe the details of the 
formulation of our proposed model. We call our model the 
NLP-VF-MaxSpace model, or just NLP-VF for short, where 
NLP stands for nonlinear pricing and VF stands for variable fre-
quency. In Section 4, we describe several solution approaches, 
including a new heuristic that explicitly incorporates the volume 
discount cutoff points. We also describe a Genetic-Algorithms 
based approach that we use to solve the proposed problem.
In Section 5, we describe our empirical design to test the 
efficacy of the proposed model. We also provide and discuss
the experimental results. In Section 6, we provide a discussion 
of the important managerial implications and suggest ideas for 
future related research.
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 2. Economics of the
Non-Linear Pricing Model

	 Under a linear pricing structure, the advertiser (or the 
customer) is charged the same amount per unit of advertising 
space regardless of volume. In the industry, this is not commonly 
the case, as companies routinely offer quantity discount breaks to 
attract larger volume customers or to incite customers to purchase 
more advertising space. These price breaks are commonly 
implemented through a step-pricing function under which the 
per-unit price for additional display of ads is discounted at each 
step. As an example, suppose from a volume of 1 impression to 
the first cutoff display frequency of say 100 units, the rate is 50 
cents per unit, from the first cutoff to the second cutoff of say 120 
units, suppose the rate is 45 cents per unit and from the second to 
the third cutoff of say 140 units, say the rate is 40 cents per unit, 
and so on. For this example, the revenue for 100 units would be 
$50; the revenue for 110 units would be $54.50 ($50 for the first 
100 units plus $4.50 for the next 10 units); the revenue for 120 
units would be $59 ($50 + $9); the revenue for 130 units would 
be $63 ($50 for the first 100 + $9 for the next 20 + $4 for the next 
10) and so on. Under a linear-pricing scheme, assuming sufficient 
customer demand, revenue for 130 units would be $65. However, 
under the linear-pricing scheme, an advertiser may choose to 
only purchase 100 units, generating revenue of only $50, whereas 
the quantity discount may incite the customer to purchase extra 
units to take advantage of the reduced prices resulting in higher 
revenues. The amount of extra space that the customer purchases 
depends of course on the price elasticity of the demand for ad 
space. The actual cutoffs and discounts will differ from publisher 
to publisher and from time to time and will be governed to some 
extent by the competition in the market. The proposed non-linear 
pricing structure assists publishers in their efforts to increase 

market share and maximize revenue while providing additional 
pricing options for the advertisers.
	 It should be noted that the nonlinear-pricing variable frequency 
(NLP-VF) model is meaningful only under certain economic 
conditions. If the ad-space demand at the regular market rate, 
i.e., with no quantity discount, exceeds the publisher’s available 
ad space, then offering quantity discounts makes little economic 
sense as it would reduce revenues. Under such a situation, a linear 
pricing model such as the VF-Maxspace model [6] would be 
applicable and sufficient. Conversely, if the quantity of ad space 
demanded at the prevailing market rate is less than the available 
space, i.e. if there is excess capacity, then all of the customer’s 
demand for ads can be accommodated without the need for any 
optimization model. However, in this situation, the publisher 
would obviously consider using discount pricing strategies in 
order to boost the demand for ad space and consequently profits. 
If the discount rate offered is such that the new demand for ad-
space exceeds the available capacity then the NLP-VF model 
is applicable. If the available ad-space is still in surplus in spite 
of the offered pricing discounts, then no optimization model is 
necessary. However, market forces always determine market rates 
in a competitive environment such that the quantity demanded 
roughly matches the quantity supplied. Thus, given the observed 
elasticity of demand for banner-ad space, the publisher can always 
offer discounts such that the new demand exceeds the available 
capacity, creating the conditions necessary for the usefulness of 
the NLP-VF model.

3. The Proposed Non-Linear Model

	 Before providing the IP formulation of the proposed model we 
discuss, at a high level, how online ad scheduling process for the 
proposed situation. A web site, upon which ads are scheduled, has 

Figure 1: A screen print of 
techsideline.com web page. 
Notice the advertising banner 
down the right hand side of 
the webpage.
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either a vertical banner or a horizontal banner or both, dedicated 
for ad display. See Figure 1 for an example of a web site with a 
vertical banner. The advertisements displayed in a given banner 
are refreshed/changed each minute. In other words, the time 
dimension is divided into slots of one-minute each and ads are 
assigned to these 1-minute time slots. Advertisers are charged 
per display. Therefore it is up to the advertiser to provide the ad 
publisher with some guidance as to how many times they wish 
to have their ads displayed during a pre-defined planning period. 
This work assumes a variable display frequency which provides 
some flexibility for the ad publisher. An advertiser, based on their 
perception of what it will take to achieve an acceptable level of 
market penetration, provides the publisher with an upper and a 
lower bound of display frequencies for each ad for the chosen 
planning horizon. If the publisher chooses to display this ad, 
the number of impressions must fall between these pre-defined 
bounds and the advertiser is charged for the exact number of 
displayed impressions. The publisher defines a planning horizon 
for which ads are scheduled in advance. For example, if the 
planning horizon is one day, there will be 1,440 time slots to be 
filled as there are 1,440 minutes in a day. 
	 There are several assumptions inherent in the formulation. 
First, it is assumed that each banner/time slot has the same 
height (for vertical banners) and width (for horizontal banners) 
of ad space dedicated for displaying ads. This height (or width) 
is denoted by S. This is a very realistic assumption because the 
designers of the web site designate a predetermined part of the 
web page for displaying banner ads. These dimensions will 
typically be coded in the html file or the style sheets of the web 
page and therefore they are likely to remain constant throughout 
the day. Second, we assume that only one ad fits within the width 
(for vertical banners) or height (for horizontal banners), i.e. two 
(or more) ads cannot fit side-by-side on a vertical banner. This 
is also a very realistic assumption as the banner ad sizes are of 
standardized widths and typical ad sizes are such that only one 
ad will fit on the width of a vertical banner. Note that several ads 
will fit along the height of a vertical banner (or along the width 
of a horizontal banner). However, it is certainly plausible for an 
ad publisher to allow ads of such sizes that multiple ads may be 
scheduled in both directions. Our model will not work in this 
situation. Third, each advertisement has a height that is less than 
or equal to the height (or width in case of horizontal banners) of 
the banner, S. Clearly if the height of a vertical banner exceeds S, 
it cannot be assigned to that website. 
	 We will now describe our non-linear variable frequency 
MaxSpace problem (NLP-VF-MaxSpace). As previously 
stated, this model is an extension of the VF-MaxSpace problem 
originally proposed by Deane and Agarwal [6]. The mathematical 
formulation of NLP-VF-MaxSpace problem is as follows: 

S : Banner height
s

i : height of advertisement i, i = 1,2,…,n
Li : �lower bound on the frequency of advertisement i, i = 1,2,…,n
Ui : �upper bound on the frequency of advertisement i, i = 

1,2,…,n
fi() : the non-linear step function of price per unit volume, e i

	 The objective of the publisher, stated in (1), is to maximize the 
amount of revenue generated through ad publishing for a given 
set of banner slots. Please note that the objective function uses a 
function f(), which is a function of the product of total frequency 
and the size of the ad displayed. This function is a step function 
and hence non-linear, although it is step-wise linear. At each step, 
the pricing is different depending on the volume. The first set of 
constraints, stated in (2), ensures that the combined height of the 
set of ads assigned to any slot does not exceed the banner height 
(width for horizontal banners). The second set of constraints, 
stated in (3), enforces the ad display frequency bounds for each 
ad for which space has been requested. If an ad is selected for 
assignment, its display frequency must be between the lower 
bound L

i and the upper bound Ui. Constraints stated in (4) and (5) 
are the binary constraints for xij and yi, respectively. 
	 The primary difference between NLP-VF-MaxSpace model 
and the VF-MaxSpace model [6] is the pricing function f() in the 
objective. The NLP-VF-MaxSpace model attempts to maximize 
the dollar-value revenue from the displayed ads whereas the VF-
MaxSpace problem attempts to maximize the usage of ad space. 
The main motivation for developing this model is to help the 
publishers maximize their profits given a step pricing function. 
The determination of profit-maximizing non-linear pricing 
function depends on the market conditions and in particular on 
the price elasticity of demand. As market conditions change, the 
pricing function needs to be updated. In a perfectly competitive 
market, the pricing function will be determined by the markets 
and the publisher will have to use the pricing function as a given 
and then rely on optimization models to maximize the revenues, 
given the market-determined pricing function. In non-competitive 
environments, the publisher will come up with the pricing 
function through trial and error because the exact price elasticity 
of demand is hard to measure. The proposed model can be used 
to help the publisher determine the possible revenues for different 
pricing functions. 
	 Due to the non-linearity of the objective function, the NLP-
VF-MaxSpace problem cannot be solved using the Simplex 
method, and linearizations or the use of non-linear solvers would 
lead to unacceptable solution times for this NP-Hard problem. In 
order to solve problems of this nature, we therefore need heuristic 
and metaheuristic approaches, even for smaller problems.
	

4. Model Solution Approaches

	 Deane and Agarwal [6] show that the variable frequency 
advertisement scheduling problem is NP-hard. The NP-hard 
nature makes it highly unlikely that it will ever be solved by an 
efficient optimal algorithm [7]. Therefore, efficient and effective 
approximation algorithms or heuristics are necessary. For the 
VF-MaxSpace problem, the best heuristic is the VF-LVMF 
(Variable-Frequency-Largest-Volume-Most-Full). For the NLP-
VF problem, we propose a heuristic that takes into account the 
quantity discount cutoffs. We call this heuristic the NLP-VF-
LVMF heuristic. To test the efficacy of this heuristic, we will 
compare its performance with that of the VF-LVLF heuristic. In 

Where
n : number of advertisements
N : number of Banner/Time slots
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addition, we propose and describe a Genetic Algorithm approach 
for solving the proposed problem. 
	 We will describe the VF-LVMF and the NLP-VF-LVMF 
heuristics next and the genetic algorithm approach next.

4.1 The VF-LVMF heuristic 

Variable-Frequency — 
Largest Volume Most Full (VF-LVMF) Heuristic

	 1. �For each ad i, define Voli = mp *si ;
	 2. �Sort the ads in descending order of Voli

	 3. �Sort slots in the order of occupied volume, most full to least 
full

	 4. �For each ad i in the sorted list, 
		  o �Determine the feasibility of assignment; i.e., check to 

see if at least Li number of slots have at least si space 
available. 

		  o �If feasible, assign an impression of ad i to each of the next 
Li most-full slots

		  o �Sort slots in the order of volume occupied, most full to 
least full

	 5.	For each ad i in the sorted list, 
		  o  �Assign impressions of ad i to slots until either no space is 

available or mp
 
number of impressions are assigned.

4.2 The NLP-VF-LVMF heuristic 

	 In order to simplify the explanation of the NLP-VF-LVMF 
heuristic, without loss of generality, we assume that there are 
only two discount cutoff points. The NLP heuristic attempts to 
maximize revenue by iteratively assigning just enough impressions 
of the chosen ad to move to the next pricing cutoff point. Only 
after every ad has either had enough impressions scheduled to get 
to this cutoff point or reached its upper bound does the heuristic 
attempt to schedule impressions at the next pricing level. Even if 
there is room to accommodate more impressions of a given ad, it 
delays additional assignment of that ad until all ads are filled up 
to the first cutoff point, thus providing maximum revenue for the 
publisher.

Step 1:	� Define Vol
i as mp *si for each advertiser; Sort the 

ads in descending order of Vol.
Step 2:	� Consider each ad in the sorted order. If Li is less 

than or equal to the first discount cutoff point and 
if feasible, i.e., Li number of slots of size si are 
available, then assign Li impression of that ad.

Step 3:	� Consider each ad in the sorted order again. If
	� the lower frequency bound Li is between the first 

and the second cutoff points and if it is feasible, 
i.e., if Li number of slots of size si are available, 
then assign that ad up to the lower frequency 
bound.

Step 4:	� Next consider each ad in the sorted order again. If 
the lower frequency bound Li is above the second 
cutoff point and is feasible, i.e., if Li number of 
slots of size si are available, then assign that ad up 
to the lower frequency bound.

Step 5:	� Consider ads assigned in Step 2 in descending 
order of their remaining volume and assign each 
ad up to its upper bound Ui or until no more space 
is available. 

Step 6:	� Repeat step 5 for the ads assigned in Step-4.
Step 7: 	� Repeat step 5 for the ads assigned in Step-5.
Step 8:	� Compute the value (or revenue) using the objective 

function for the LP-VF problem.

4.3 Genetic Algorithm (GA)

	 We also employ a genetic algorithm (GA) based algorithm 
which was originally introduced by Kumar et al. [10] and 
successfully utilized by Deane [5]. For the three proposed 
problems, each GA chromosome, which can be visualized as a 1 
x n vector as depicted below, represents a candidate sequence of 
n advertisements 1 2{ , ,..., }nA a a a= .

	 a2	 a4	 a1	 a5	 a3

	 The advertisements are served in the order in which they appear 
in the respective chromosome. For example, given the basic five 
advertisement chromosome string depicted above, the GA would 
first attempt to serve advertisement 2, followed by advertisement 
4, 1 and so on. When attempting to serve a given ad, if there are 
not at least Li (lower frequency bound for advertisement i) time 
slots with sufficient capacity to accommodate the ad, it is not 
served at all. Those advertisements which do meet this feasibility 
requirement are served until either their upper frequency bound 
is reached or an attempt has been made to place the respective 
advertisement in each time slot. The associated fitness value is 
measured based on the objective function of the given problem. 
The three primary operations of a simple genetic algorithm are 
reproduction, mutation and crossover. We employ a roulette 
wheel reproduction method, a one-point crossover and a basic 
advertisement swap mutation operator. Please see appendix A for 
a more detailed description of the GA operators.

GA Notation

e : elite list percentage       mp : probability of mutation		
ps : population size           NU: num of desired unique solutions

CL: crossover attempt limit

	 The GA begins with an initial population of chromosome 
strings which are all created randomly with the exception of one 
string which is created using the appropriate greedy heuristic. 
Between generations we use the elite list percentage ( e ) to 
determine how many of the most fit strings will survive unchanged 
into the next generation. The remaining strings are developed via 
crossover; therefore, the crossover rate is (1- e ). The roulette 
wheel reproduction operator selects potential reproductive 
parental strings based on their relative fitness values. Each string 
has a probability of selection which is directly proportional to the 
ratio of its fitness value divided by the sum of the fitness values 
of the entire population. The ‘most fit’ strings are thereby given 
the highest probability of selection. Given the binary nature of 
advertisement selection in each of the proposed advertisement 
scheduling problems, any advertisement duplication within a 
proposed solution string causes it to be infeasible. As a result, 
common GA selection and crossover mechanisms struggle to 
achieve an acceptable level of feasibility for these problems. 
To overcome this challenge, we use a crossover mechanism 
developed by Kumar et al. [10] as described below which insures 
the feasibility of each new offspring. Having selected two parent 
strings via the roulette wheel process described above, a single 
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crossover point is randomly selected. In the example depicted in 
Figure 2, point number five, which falls between advertisements 
five and six, was selected as the crossover point. Based on the 
chosen crossover point and the genetic material of the parents, 
two child strings are created. The genetic material on the left side 
of the crossover point in parent 1 is then directly inherited by 
child 1 and similarly for parent 2 and child 2. In our example 
(see Figure 3), the first set of advertisements which are inherited 
by child 1 are advertisements a7, a4, a11, a5 and a8. Up to this 
point, the proposed crossover method has followed the basic 
single point crossover process; however, the remainder of the 
process is somewhat different. Unlike the traditional mechanism, 
the second half of the genetic material which makes up the 
chromosome string of child 1 is not directly inherited from parent 
2. Instead, the advertisements which make up the second half of 
child 1’s string are inherited from the second half of parent 1 
with the difference being that they are reordered based on how 
they appear in parent 2. A similar process is followed for child 
2. In our basic example, the advertisements which make up the 
second half of child 1 are advertisements a9, a10, a3, a6, a1 and a2, 
but they are reordered based on how they appear in parent 2 (ie. 
a2, a1, a10, a3, a9 and a6). This reproduction process has created 
two new offspring for the next generation. However, before being 
added into the next population, the new offspring 
are given an opportunity to mutate based on the 
pre-defined probability of mutation operator 
(pm). A string which is selected for mutation will 
have two randomly selected advertisements swap 
places within the string. In the example below (see 
Figures 4 and 5), we assume that the second child 
has been selected for mutation and advertisements 
a8 and a11 have been randomly selected as mutation 
candidates. This entire process in repeated from 
generation to generation until a predefined number 
of unique solutions have been created or the 
crossover attempt limit has been exceeded. 

GA – Algorithm

Step 1:	� Initialize
Step 2:	� Apply the VF-LVMF greedy heuristic 

and insert the resulting solution as the 
first string in the initial GA population. 
Apply the NLP-VF-LVMF heuristic 
and insert the resulting solution as the 
second string in the initial population.

Step 3:	� Complete the initial population by 
creating (ps – 2) random chromosomes

Step 4:	� Set t = 1 and c = 0.
Step 5:	� For each string, attempt to assign each 

of the advertisements in the order in 
which it appears in the string. If feasible, 
assign advertisement i to the least full 
slots one at a time until we either reach a 
time slot which has insufficient capacity 
to accept advertisement i or the upper 
frequency bound for advertisement i, 

mp  , is reached. Evaluate the fitness 
of each string based on the objective 
function. Check each chromosome for 
uniqueness. For each unique string, set t 
= t + 1

Step 6:	� Sort the strings in descending order of their relative 
fitness function values.

Step 7:	� Populate the elite list by selecting the best ( e * ps) 
strings based on their relative fitness values. These 
strings are added to the next population. These strings  
remain in the current population to be considered for 
crossover in step 8.

Step 8:	� Utilizing the roulette wheel selection method, select 
two parent strings for  reproduction and cross them 
over. Set c = c + 1. 

Step 9:	� Mutate the resulting children based on the mutation 
probability. 

Step 10:	� Add the children strings to the next population 
advertisement test them for uniqueness.  For each child 
that is unique, set t = t + 1.

Step 11:	� If t e  NU or c e  CL, calculate the fitness value for 
those strings in the new  population and terminate 
reporting the best solution so far.

Step 12:	� If the number of chromosomes in the next population 
e  ps, remove the latest children that were added to 
the current population one at a time until the number 
of chromosomes in the population = ps and goto step 
5; otherwise, goto step step 8.

Figure 2: Parents Prior to Crossover

Figure 5: Child 2, After Mutation

Figure 4: Child 2, Before Mutation

Figure 3: OffspringD
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4.4 Complexity

	 The complexity of all the greedy heuristics proposed above 
is O(nN ln(N)) where n is the number of advertisers and N is the 
number of slots in the planning period. The heuristics sort both 
the list of advertisers and the list of slots. A more comprehensive 
complexity would be O(nln(n)+nN ln(N)) but since in general n 
will be much smaller than N, the nln(n) term can be ignored for 
the purpose of figuring complexity. Also, it can be shown that 
since the VF-Maxspace problem, which has been shown to be 
NP-Hard [6], is a special case of NLP-VF (when, fi is the same for 
all i), that NLP-VF is also NP-Hard.

5. Experimental Testing
of Proposed Heuristics

	 We first describe the process and the rationale underlying our 
problem generation process and then we present and discuss our 
results in detail.

5.1 Generation of Test Problems

	 To test the proposed solution approaches, we generated six sets 
of 25 problems each for a total of 150 test problems. Three sets are 
for horizontal banners and three for vertical banners. We use three 
different planning horizons — 12 hours (720 min), 1 day (1,440 
min) and 2 days (2,880 min). See Table 1 for a summary of the six 
sets of problems. In an effort to align this work with the real-world 
problems, we use the industry accepted standard sizes developed 
by the IAB [8]. For example, for horizontal banners, there are 
two standard sizes — the half banner of size 234x60 pixels and 
the full banner of size 468x60 pixels. For vertical banners, a total 
height of 600 pixels is standard, with ad sizes of 120x60, 120x90 
and120x240 being standard. Note that IAB specifies many other 
types of ads such as skyscrapers, leaderboards, micro bar and 
rectangles, which are not included in our study. Our focus is on 
horizontal and vertical banner ads. When generating our problems 
we made a concerted effort to ensure that the number of ads and 
their demands (L

i and Ui) are such that most of the ads have at 
least their lower frequency bound ads satisfied. We also made sure 
that the demand for ad space was not smaller than the capacity, 
because then an optimization model would not be necessary. 
	 In creating these problems we paid particular attention to 
the economic justification for these types of problems. Recall 
from Section 2 that the NLP-VF-MaxSpace problems only make 
economic sense if the demand for ad space is less than the supply 
with the standard/regular pricing structure and the demand, at 
an assumed price elasticity, is greater than the supply when the 

discounted pricing structure is employed. We ensured that each of 
the NLP-VF problems met these criteria.

5.2 GA Parameter Selection

	 When running GAs, the values for a number of parameters 
such as population size, elite percentage, mutation probability 
etc. have to be chosen. As discussed by Aytug et al. [3], one 
of the concerns with genetic algorithms is the absence of clear 
and consistent theoretical guidance as to how best to choose the 
parameter values. In an effort to avoid the commonly criticized 
practice of ‘parameter tuning’ and to gain a better understanding 
of the robustness of each of the proposed techniques for the 
problems introduced, we maintain a consistent set of parameter 
settings across all of the problem sets for both problems. The 
chosen parameter values were selected based on a full factorial 
design of experiment employed for one NLP-V1 problem sets. 
We tested the GA for different population sizes (40, 80 and 120), 
different mutation probabilities (0.01, 0.05 and 0.1) and different 
elite-list percentage (0.10, 0.25 and 0.40). We tested each of the 
27 possible parameter combinations on the set of 25 problems. 
The combination that provided the best solution quality was a 
population size of 80, a mutation probability of 0.05 and an elite-
list percentage of 0.25 therefore we employ this set of parameter 
values for our experiments.

5.3 Results

	 We report the results for the two heuristics, i.e. VF-LVMF 
and NLP-VF-LVMF and the GA, for all six problems set in 
Table 2. We report the average revenue achieved for each set of 
problems.
	 To test if the non-linear pricing model made economic sense, 
we first report (in the first column of numbers) the revenue that 
would have been realized under linear pricing, i.e. no quantity 
discounts and if there was excess capacity. Note that under this 
situation, all of the demand would be met and no optimization 
method would be needed to schedule the entire set of ads. We then 
tried to boost the demand by offering quantity discounts and found 
that more of the available space was utilized and in fact there was 
excess demand as a result of the discounts. In order to compute 
the revenue, we had to assume a certain price-elasticity function. 
We assumed that a 10% decrease in price would lead to a 10% 
increase in demand. A more elastic demand, i.e. a higher than 
10% increase in demand for a 10% decrease in price would lead 
to even higher revenues, and conversely a more inelastic demand 
would lead to a decrease in revenue. We report (in second column 
of numbers) the realized revenue with non-linear pricing using 

Table 1: Description of Problem Sets for the NLP-VF problems

Problem Set	 Banner	 # of	 Planning	 Number of	 Lower Bound	 Upper Bound
	 Shape	 Problems	 Period (N)	 advertisers (n)	 Frequency (L

i)	 Frequency (Ui)

NLP-H1	 Horiz	 25	 720	 40 to 60	 25	 60

NLP-H2	 Horiz	 25	 1,440	 60 to 80	 40	 80

NLP-H3	 Horiz	 25	 2,880	 80 to 100	 60	 120

NLP-V1	 Vert	 25	 720	 40 to 60	 25	 60

NLP-V2	 Vert	 25	 1,440	 60 to 80	 40	 80

NLP-V3	 Vert	 25	 2,880	 80 to 100	 60	 120
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the VF-LVMF heuristic. We note that the revenues increased from 
$1,478,343 to $1,598,670, an 8.1% increase. This establishes the 
usefulness of having a non-linear pricing strategy even under a 
modest elasticity assumption of 10% increase in demand on a 
10% decrease in price. Clearly, this 8.1% increase in revenue 
depends on our assumed elasticity. In reality, the gain in revenue 
will depend upon the real price elasticity of demand. A higher 
price elasticity of demand can result in even higher revenues and 
a more inelastic demand would not benefit so much from a non-
linear pricing model. We note that because a non-linear pricing 
has never been discussed in the literature on online ad scheduling, 
the issue of price elasticity of demand has also not been discussed 
in relation to online ad scheduling. We next report (in the third 
column of numbers) the realized revenue with the quantity 
discounts using the NLP-VF-LVMF heuristic which attempts 
to leverage some domain-specific knowledge, specifically the 
discount cutoff points. The NLP-VF-LVMF heuristic performed 
slightly better than the VF-LVMF heuristic on average. The 
revenues increased from $1,598,670 to $1,600,790, an increase 
of 0.13%. Although as a percentage, an increase of 0.13% might 
seem insignificant, but for a 22 billion dollar industry, even a 
0.13% increase is significant in absolute terms. We tested to see 
if the NLP-VF-LVMF heuristic was statistically significantly 
better than the VF-LVMF heuristic using a one-tailed paired t-test 
and found that the NLP-VF-LVMF heuristic was superior to the 
VF-LVMF heuristic at the 0.05 significance level. The p-value 
ranged between 0.013 to 0.0295 for the six sets of problems. 
In addition, we also tested the GA for the six problem sets and 
found a marginal improvement (0.06%) over the NLP-VF-LVMF 
heuristic, at the expense of significantly more CPU time. So the 
NLP-VF-LVMF heuristic works extremely well for the NLP-VF-
MaxSpace model.
	

6. Summary, Managerial
Implications and Future Research 

	 In this paper, we fill a void in the current literature by 
proposing an online ad scheduling model to support a non-

linear quantity discount pricing strategy. This represents a real-
world variation of the NP-Hard online advertisement scheduling 
problem. In addition, we propose and test several alternative 
solution techniques. In an effort to provide potential users with a 
basic estimation of their performance potential, these techniques 
were tested against a large set of sample problems which vary in 
size and difficulty. 
	 Online advertisement publishers currently find themselves 
in a very competitive industry. One of the primary means of 
competition is pricing. Firms compete by offering attractive 
non-linear pricing models. Until now, the online ad-scheduling 
literature had not provided a supporting scheduling model for this 
common strategy. In this work, we introduce such a model. The 
model and the solution approaches proposed in this paper can be 
used by employees of online ad publishers to (i) schedule ads 
over a given planning horizon with a nonlinear pricing structure 
and (ii) (assuming a known elasticity of demand) to develop a 
set optimal quantity discount rates. In addition to these two 
organizational benefits, which should help ad publishers improve 
their operational efficiency, the proposed model will help support 
decision making for high level managers. The proposed model 
and solution techniques will provide managers of online ad 
publishing agencies with a powerful decision support tool by 
allowing them to compare and contrast different potential pricing 
strategies for this very challenging scheduling problem. This can 
provide them some insight as to how structural changes to their 
ad pricing scheme is likely to impact the bottom line. We are 
hopeful that these managerial takeaways will provide them with a 
competitive advantage. 
	 There are several suggestions for future research. First, this 
and prior studies have focused only on banner ads, which make up 
only a fraction of all online ads. Future studies should consider the 
development/incorporation of other types of online ads. Second, 
this and prior studies have focused on scheduling ads on only 
a single web site. Future studies should also develop models to 
schedule ads on multiple sites simultaneously. Third, prior work 
in online ad scheduling has not taken into account the impacts 
of traffic congestion. Future studies should explicitly incorporate 

Table 2: Average Revenues ($) of NLP-VF Problems

	 Average Revenue

	 Linear Pricing.	 Non-Linear Pricing.	 Non-Linear Pricing.	 Non-Linear Pricing.
	 VF-LVMF Heuristic.	 VF-LVMF Heuristic. 	 NLP-VF-LVMF heuristic. 	 GA

NLP-H1	 288,026	 300,396	 301,247	 302,568

NLP-H2	 514,170	 531,525	 532,478	 533,037

NLP-H3	 1,076,805	 1,112,851	 1,113,264	 1,114,125

NLP-V1	 374,270	 397,728	 398,358	 398,867

NLP-V2	 727,206	 804,168	 806,598	 807,024

NLP-V3	 1,478,343	 1,598,670	 1,600,790	 1,601,741

	 CPU Time (sec)

NLP-H1	 <1	 <1	 <1	 7.8

NLP-H2	 <1	 <1	 <1	 25.9

NLP-H3	 7.28	 7.89	 8.12	 87.9

NLP-V1	 <1	 <1	 <1	 8.3

NLP-V2	 <1	 <1	 <1	 27.8

NLP-V3	 8.24	 8.58	 9.02	 95.2
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traffic into the models. We hope that our work will motivate 
additional research which will be beneficial in our efforts to solve 
this difficult problem. 
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 Appendix A — GA Parameter and Setting Definitions

GA:

Population Size (ps) — the number of chromosomes (solution strings) which are included in each population

Selection Process — process by which parent chromosomes are selected from the population 

Mutation Process — process by which individual bits are to be selected as potential mutation candidates

Mutation Probability ( mp ) — the probability that a mutation candidate is mutated

Crossover Process — process by which parental chromosomes are combined to form the children chromosomes

Stopping Criteria — criteria which determines how many generations are included in the GA run

Coding Scheme — process by which potential solutions are coded are coded as chromosome strings

Elite List Percentage ( e ) — the percentage of chromosomes which survive from one generation to the next in their current form.
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