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Abstract One strategy for alleviating excess latency

(delay) in the Internet is the caching of web content at

multiple locations. This reduces the number of hops nec-

essary to reach the desired content. This strategy is used for

web content such as html pages, images, streaming video,

and Internet radio. The network of servers which store this

content, and the collections of objects stored on each ser-

ver, is called a content distribution network (CDN). In

order to optimally design a CDN, given a network topology

with available server storage capacity at various points in

the network, one must decide which object collections to

place on each server in order to achieve performance or

cost objectives. The placements must be within the storage

limits of the servers and must reflect the request patterns

for each collection of objects to be cached. Researchers

have suggested formulations for the CDN problem which

address performance by minimizing latency (the average

number of hops is a commonly accepted measure of

latency) from client to content, or formulations that focus

on minimizing cost of storage and/or bandwidth. In this

research, we develop a model which allows for the

simultaneous treatment of performance and cost, present

examples to illustrate the application of the model and

perform a detailed designed experiment to gain insights

into cost/hops tradeoff for a variety of network parameters.

Keywords Content distribution networks � Multi-

objective programming � Integer programming � Fuzzy sets

1 Introduction

The simultaneous growth in the number of Internet users

and the size of the typical content delivered is leading to

increased latency, and often unacceptable response times,

referred to by some network professionals as the ‘‘World

Wide Wait’’ [13]. The effects of this poor quality of service

range from mild annoyance on the part of Internet users to

substantial lost revenues for companies engaged in on-line

commerce. Given the bursty nature of user access patterns

and the inability of the Internet to scale, new solutions may

be necessary to help alleviate this congestion. One solution

for this problem is caching, where content can be distrib-

uted or replicated, and stored at, multiple locations around

the Internet [13, 14, 22, 23]. This puts the content closer to

the requestor, minimizing the number of hops, and there-

fore the latency, when content is requested. A hop is the

trip a data packet takes from one router, proxy server, or

intermediate point to another in the network. Thus, a path

followed from a point of object request to the copy of the

content will be made up of multiple hops, depending on the

physical network path to the content. Latency, or network

transit time, is directly related to hops because each packet

may experience queuing delay at each intermediate point as

the packet is prepared for transmission, as well as the delay

required for routing determination. Also, each time another

hop is required, more transmission distance is involved,
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which increases latency. While hops is not a perfect pre-

dictor for latency, Kangasharju et al. [14] showed that for a

large study of network delivery times, overall latency was

closely related to the number of hops. Thus, hops are used

as a common proxy for latency [13, 14].

The concept of caching has long been employed in IP

address resolution, reducing the time to convert a symbolic

domain name to an IP address [12]. The level of caching

can vary from a single object such as one symbolic name/

IP address pair to an entire domain hierarchy. In the same

way that caching has been applied to domain names, the

concept can be used to store files, html pages, fragments of

pages, image files, streaming video, Internet radio, or any

other content object desired by users [22]. The application

of this caching concept has lead to the emergence of a

structure known as content distribution networks (CDNs)

[13, 14, 22, 23]. Assuming that every web object exists in

some original location known as an origin server, the task

in constructing a CDN is to determine if an object should

be replicated, and if so, where it should be located

throughout the network [14]. This simultaneous determi-

nation of replicated content and location is done subject to

goals such as minimizing the average or total number of

hops necessary to retrieve the content given a particular

pattern of users’ requests for content, minimizing content

storage cost and the bandwidth cost for content transfer, or

some other similar performance measure.

In regard to the business model for a CDN, at the lowest

level of the hierarchy we have the end-client, who desires

some type of service over the Internet. This end-client is

willing to pay a content provider for the service, and this

payment aggregated over a large group of end-clients

represents the total income for the content provider. For

example, an end-client may desire to download an mp3 file

over the Internet, and is willing to pay an Internet music

provider for that file. However, in order for the music

provider to make his large base of end-clients happy with

the service, he or she must have ample copies of the large

database of potential mp3 files distributed throughout the

network so that downloads will be fast (in other words, few

hops will be necessary to reach a copy of the music file).

It would be rare for a content provider to have their own

network of storage servers, so the content provider turns to

a CDN provider whose business purpose is to cache and

distribute copies of web objects on behalf of the content

providers. Their income is derived from the fees which

content providers pay in order to have their content cached

and delivered, and these fees are based on where the

content is stored, the size of the content, and the monthly

bandwidth used to deliver the content. The content will

typically be large files or databases, as in the case of

Internet music. While any end-client request may result in

a transfer of only a few megabytes of data (a few mp3

files), the service provider must store the entire listing of

potential songs, which could be tens or hundreds of giga-

bytes. The same is true of on-line video, archived news

files, or any other type of content from which end-clients

may choose a sub-set to download. We refer to these large

groups of similar objects as an object collection.

It is important to note that object collections do not have

to be homogenous, nor do all of the contained objects need

to have a similar popularity level. According to Pallis and

Vakali [22], a typical practice is to group web content

based on either correlation (object similarity) or access

frequency, and then replicate objects in units of content

clusters. In our analysis, we will only be concerned with

the total request volume routed to a collection in aggregate,

and with the average size of a download request from the

collection, which together define the bandwidth needed for

object transfer. Thus, most of the request volume could be

for a few of the files in the collection, or the files could be

equally popular. Whether the average size of a download

request from a collection is dominated by a few large but

frequently requested items within the collection, or by

numerous similarly sized items, is irrelevant. Likewise, the

collection could be a mixture of music, video, news files, or

any other downloadable items. The content provider has

complete discretion in how to do these groupings. From the

standpoint of our analysis, the grouping logic is transparent

and the driving forces are the request volume and the

average download size.

In regard to the caching plan, this is a decision problem

which involves both the content provider and the CDN

provider. Typically, both parties will cooperate to develop

a service-level agreement (SLA) which outlines the

expected performance and costs associated with their

business arrangement. The content provider wants an SLA

which assures that end-clients are not kept waiting too long

for downloads, and yet ensures that the storage and deliv-

ery fees which they must pay are low enough that they can

charge reasonable fees to the end-client and still make a

profit. While the CDN provider seeks to maximize revenue,

they also want the content provider to be happy with the

SLA and its implications, as this is a very competitive

business where clients can easily switch to other CDN

providers. To arrive at the best plan, the content provider

will provide information about their collections and the

pattern of object requests. The CDN provider will merge

this information with the information about their network

structure and pricing policies and then solve the decision

problem which determines optimal caching locations given

different combinations of preferences for cost versus per-

formance. Thus, it is the CDN provider that generates

solutions or plans, because only the CDN provider has all

of the necessary information to determine these solutions.

There will likely be back and forth negotiations or
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discussions between both parties until a stable set of

solutions is reached, at which point the CDN provider will

present to the content provider a set of possible caching

plans along with the details about resulting cost and per-

formance. It is then up to the content provider to decide

which plan best suits their needs in terms of the balance

between cost and performance.

There are numerous variations of the caching problem,

involving what, where, and when to cache [13]. Because of

the real costs (storage, access, etc.) associated with cach-

ing, not all content should be cached. The challenge of

determining what to cache has been addressed, but is still

an open research area. As for where to store, content may

be cached at the client browser, at a proxy server some-

where between the client and the website, or at the host

website server itself. And once content has been cached,

there are important questions as to when to place items in a

cache and when to remove them [13]. While numerous

models have been developed for addressing where to cache

based on either cost or latency, none to the best of our

knowledge have attempted to model CDN design which

strikes a balance among multiple important conflicting

objectives such as latency and cost. In this research, we are

concerned with optimal strategies for distributing content

objects among various proxy sites in order to address these

multiple objectives, assuming that the decisions on which

objects to cache and when to cache them have been made.

This paper is organized as follows. In the next section,

we review some existing formulations for the CDN loca-

tion problem. In Section 3, we present a model for

extending this problem to a multiple objective format

which can address both cost and latency criteria. Section 4

illustrates the application of fuzzy multi-objective pro-

gramming as a means to solve the formulation. Section 5

presents an example to illustrate the application of the

model in a decision process. In Section 6, we give an

example to show how pricing decisions might be evaluated

using the model. Section 7 presents results of an experi-

ment over a broader range of costs so that we may offer

more general insights, and in Section 8 we close with some

overall conclusions.

2 Previous research

Over the last 10 years, several studies have presented

models for solving different variations of the CDN location

problem. These have involved how to locate proxy servers,

where to cache content, how to size caches, or optimal

routing from clients to proxies. For example, Kangasharju

et al. [14] developed a model for replicating objects in

CDN servers in order to minimize the average travel time

(hops) to the desired content. They showed that the model

is NP-Complete, and then suggested four basic heuristics

for determining possible placements (others, such as Qiu

[25], have also suggested heuristics). Yang and Fei [32]

studied a similar object placement problem with limited

storage capacity. Cidon et al. [9] developed a distributed

content algorithm for minimizing storage and communi-

cation cost. Datta et al. [13] also developed a model for

minimizing the total cost (number of hops) to retrieve

cached objects. They described their model as a simplistic

starting point with the purpose of stimulating further

research in the area. Kumar [15] looked at the performance

of a caching policy which considers objects held by

neighbor proxies in an effort to reduce redundancies.

Kumar and Norris [16] proposed a new proxy-level web

caching mechanism that exploits historical request patterns

and deviations from normal usage patterns in order to

determine what to cache.

Many of the papers in CDN design have attempted to

study different aspects of the design problem simulta-

neously. Bektas et al. [3, 4] provided a good review of

recent efforts in CDN design. Some of the papers they

reviewed include [2, 17, 18, 21, 26, 29, 30]. We summarize

their review as follows. Ryoo and Panwar [26] modeled the

problem of distributing different types of content to dif-

ferent servers while determining necessary communication

link capacities and server size. Xu et al. [29] studied the

problem of determining the optimal number and location of

proxy servers along with placement of object replicas on

the servers. Xuanping et al. [30] examined proxy server

placement and object replication subject to a budget con-

straint where each client is assigned to its closest proxy.

Laoutaris et al. [17] studied optimal location of the objects

along with the capacity dimensioning of the proxies.

Laoutaris et al. [18] studied the storage capacity allocation

problem which determines the optimal proxy location, the

capacity of each proxy and the objects that should be

cached in each proxy given fixed client assignments.

Nguyen et al. [21] assumed that the total capacity of

proxies is greater than the total demand and allowed client

requests to be fractionally served by different proxies. They

developed an integer linear programming formulation with

a solution approach based on Lagrangean relaxation.

Almeida et al. [2] developed an optimization model and

several heuristics for the problem of jointly routing

requests and placing proxies such that total server and

network delivery costs are minimized.

Some of the most comprehensive models for CDN

object placement have been those of Bektas et al. [3, 4].

Bektas et al. [4] developed a model for jointly locating

proxy servers on a set of potential nodes, replicating con-

tent on the nodes, and routing the request for content to a

suitable proxy server so that the total cost of distribution is

minimized. They proposed a linearization scheme for the
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non-linear model and examined solution possibilities using

both an optimization approach and a heuristic. In Bektas

et al. [3], they assumed a fixed number of proxy servers and

developed a model to replicate content and determine the

request routing subject to a QoS constraint. They proposed

two solution techniques based on Benders decomposition

and Lagrangean relaxation.

While both of these are comprehensive treatments of

object placement with respect to cost, neither attempt to

include the minimization of latency, which has been shown

to be another very important criteria. By concentrating only

on cost, they were able to focus on the link layer which is

the logical layer that sits on top of the physical layer or

actual network. While the link layer can be viewed as a

fully-connected mesh network which provides direct links

(one-hop paths) that connect every pair of nodes in the

network, the physical network may require many hops

between nodes to fetch an object from a remote location.

Therefore, if latency is an important criteria, we must

consider the physical network topology in our treatment. In

the next section, we discuss issues related to addressing

both cost and latency in a CDN and present a model which

allows for these multiple criteria.

3 The multiobjective CDN model for cost and latency

Latency is a major concern for providers of Internet content.

Users have a very low tolerance for delay, often leading to

abandoned web site connection attempts and a resulting loss

in sales. Number of hops is a common surrogate for latency,

as both routing and queuing delay is introduced each time we

begin another leg in a web journey.

While latency is undoubtedly important in determining

where to cache web objects, cost is also extremely important.

Currently, CDN prices are high, but are decreasing. The

average cost per gigabyte of streaming video transferred in

2004 was $1.75, and the average price to deliver a gigabyte of

Internet radio was $1 [22]. These are the costs charged back

by the CDN providers to the owners of the web content

(publishers of the webpage). Part of this cost is likely due to

the newness of the technology and the relatively small

number of available providers. For example, Akamai

Technologies owns approximately 80% of the overall CDN

market, with more than 12,000 servers over 1,000 networks

in 62 countries [22]. While costs are expected to decrease

over time in parallel with decreasing bandwidth costs and

increased competition, the increasing demand for CDN

services will continue to make cost an important consider-

ation. In 2004, more than 3,000 companies were using CDN

services, spending more than $20 million per month, with

annual growth rates for streaming video and Internet radio

predicted to approach 40% [22].

We present a formulation which directly treats both

latency and cost. As in Bektas et al. [4], we assume that

proxy servers are fixed. As in Kangasharju et al. [14], we

assume that each node in the network is an Internet

Autonomous System (AS) or proxy server which represents

a server location with finite storage capacity. Thus, the

original source location for a web object (origin server)

would be a possible AS, as would any proxy servers which

have been added for distributed versions of the content. If

origin servers are present, we can include them in the

formulation by hard-coding the appropriate location/object

variables. If the AS is acting as the originating point for a

client request, we denote it as node i, where i = 1, 2,… I,

and the location of a server which fields a request is

denoted as node j, j = 1, 2,…J, where I is the number of

originating points and J is the number of cache locations.

Let k represent a collection of objects where k = 1, 2,…
K (for example, k = 1 might be a collection of mp3s,

k = 2 a collection of videos, etc.). In terms of cost, we

follow the lead of numerous other researchers and include

both the cost of object storage and the cost of object

transfer. Bektas et al. [4] treated storage cost as a fixed

instantiation cost. We calculate storage cost based on

object collection size by using a cost per gigabyte stored.

Object transfer cost is essentially a bandwidth usage cost

which is charged based on the volume (gigabytes) of data

transferred. We assume cooperative caching where any

proxy can contact another proxy in order to fulfill an object

request such that our transfer cost is based on usage of

‘‘infrastructure bandwidth’’ or ‘‘in-CDN bandwidth’’

between proxies. Edge bandwidth is a sunk cost since all

requests from clients must initially be transmitted to the

client’s assigned proxy and are therefore un-avoidable.

Thus, we assume no bandwidth cost if the request is served

locally. Also, we assume as did Bektas et al. [4], with no

loss of generality, that the bandwidth price is charged for

transmission at the link layer such that it is independent of

the number of hops. This is a common pricing mechanism.

However, if this is not true, all that is required is that

bandwidth usage cost must be multiplied by distance to the

object collection in the objective function so that hops are

reflected in the pricing.

In regard to bandwidth pricing, it is common for CDN

providers to offer quantity discounts (also referred to as

volume-based pricing), especially the major CDN provid-

ers who focus on global delivery. The data in Table 1

illustrates the current trend in the market for the 1st quarter

of 2009 for video delivery. Based on the total volume a

customer has served on its behalf by the CDN provider,

prices in early 2009 could vary from as high as $.52 per

gigabyte at a low volume to $.025 per gigabyte at a high

volume. While 500 TB per month of volume would be

expected from a very large CDN customer, there are ‘‘more
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than a handful’’ of these customers in the market [27]. With

the constant decline in bandwidth prices, we could expect

that in the future even better prices, at lower trigger levels,

than those shown in Table 1 will be available. With these

sorts of pricing variations available, a model which strives

to minimize cost should certainly include volume-based

pricing and the effect it could have on the hops/cost

tradeoffs.

Before developing a model to accommodate multiple

criteria, it is important to ascertain the best mode of criteria

representation. It is possible to model this problem as a cost

minimization problem with performance bounds as con-

straints. It is also possible to model it with a performance

maximization objective subject to a budget constraint.

However, we do not believe that either of these approaches is

as powerful as a true multiobjective formulation. The purpose

of treating both cost and performance as objectives is to avoid

the necessity to create bounds and to allow the decision maker

total flexibility in arriving at the best compromise between

cost and performance. Once a bound is selected, the solution

domain is restricted and cannot consider tradeoffs below

(above) that bound. For example, if it were possible to

increase performance (decrease latency) considerably with a

negligible increase in cost, that option would not be open to us

with a bounded formulation assuming the performance con-

straint is binding. In other words, within the bounded range

tradeoffs between cost and performance would be determined

solely on the marginal substitution rates dictated by the

mathematical structure of the problem as opposed to the

decision maker’s preferences, and outside the bounded range

no tradeoffs of any kind are possible. While sensitivity

analysis around the bound can tell us the nature of marginal

tradeoffs between the bounded value and the objective, once

again these are based on the marginal substitution rates

between the variables and does nothing to incorporate the

decision maker’s preference structure for the tradeoff. The

multiobjective format allows us to specify the nature of the

tradeoff preferences and to compare the solutions which

would be best for each of those preference structures. The fact

that the multiobjective method only examines non-dominated

solutions means we lose nothing in comparison to the single

objective bounded approach, but gain much in terms of ability

to accommodate decision maker preferences in our solution

process. Because it is non-dominated, the efficient frontier

comprised by the multiobjective corner points will contain

the solutions which the single objective model would provide,

plus numerous other alternatives. Referring to a set of real-

world public policy problems, Cohon [11] states ‘‘The

imposition of a single-objective approach on such problems is

overly restrictive and unrealistic. Multiobjective analysis

allows several noncommensurable effects to be treated

without artificially combining them. This is clearly a signif-

icant improvement in analytical capability.’’ He also states

that ‘‘It is generally true, however, that multiobjective

approaches will indicate to decision makers a range of choice

larger than the one ‘optimal’ project identified by single-

objective methods. This larger range of choice is due to the

articulation of value judgments regarding the objectives by

decision makers in the project selection phase rather than

during analysis. This aspect of multiobjective programming

and planning is perceived as an advantage. A general rule for

decision making which is assumed here is that more infor-

mation (carefully presented) is better than less information.

… Informed, rational decision making requires knowledge of

the full range of possibilities. This can be provided by mul-

tiobjective analysis.’’ Consequently, we suggest a multiob-

jective model which incorporates cost objectives (including

volume-based pricing) and latency objectives as well as the

other features discussed previously.

We use the following additional notation:

Parameters

rik = request volume originating at node i for any item

in collection k (number of requests per month)

dij = distance from i to j (hops)

bk = size of object collection k (gigabytes)

ok = average size of a download request from collection

k (gigabytes)

sj = storage capacity at j (gigabytes)

cj = cost to store cached content at j (dollars per

gigabyte stored per month)

l = index of volume price levels based on bandwidth

usage, l = 1, 2,…, L, where L is the number of available

price levels

ql = the transferred bandwidth in gigabytes necessary to

receive price level l

fl = the price per gigabyte transferred at price level l

M = a very large positive constant

Variables

Xijk = 1 if the demand originating at node i for an object

in collection k is routed to a cache at node j, 0 otherwise

Yjk = 1 if collection k is cached at j, 0 otherwise

Vl = 1 if the volume of bytes transferred[ql and Bql?1,

0 otherwise

Table 1 Typical infrastructure bandwidth charges in 2009

Volume

(terabytes per month)

High quote

(cost per gigabyte)

Low quote

(cost per gigabyte)

50 $0.52 $0.45

100 $0.40 $0.25

250 $0.20 $0.10

500 $0.10 $0.025

Source: http://www.blog.streamingmedia.com/.a/6a00d834518e1c69

e201156fc68141970c-popup [accessed 10-19-09]
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This yields the following multiobjective model:

P1 : Min Z1 ¼
X

i

X

j

X

k

rikdijXijk ð1Þ

Min Z2 ¼
X

j

X

k

cjbkYjk þ
X

l

X

i

X

j

X

k

flVlrikokXijk

where i 6¼ j ð2Þ
s:t:
X

i

X

j

X

k

rikokXijk � qlVl� 0 8 l where i 6¼ j ð3Þ

X

l

Vl ¼ 1 ð4Þ

X

k

bkYjk � sj 8 j ð5Þ

rik

X

j

Xijk � 1

 !
� 0 8 i; k ð6Þ

X

i

Xijk �MYjk 8 j; k ð7Þ

X

i

Xijk þMð1� YjkÞ� 1 8 j; k ð8Þ

The first objective function Z1 minimizes the total

number of hops per month in the network by multiplying

the request volume rik which originates at each proxy by

the distance dij to the placements suggested by Xijk for each

object collection k. The second objective function Z2

minimizes total cost. The first term is the total cost of

object storage across all j servers (it is worth noting again

here that bk is the size of collection k which is a collection

of many objects and may be quite large, while ok is the size

of an average download request from collection k). The

second term is the delivery (transmission) cost. Summing

over all k object collections, the product of the request

volume rik times the typical object size ok represents the

number of gigabytes that will have to be transferred via any

object/route placement Xijk. If i = j, then the delivery is

local and there are no bandwidth charges. The second term

in Z2 also reflects volume pricing by multiplying the

volume price fl times the indicator variable Vl which

indicates where we fall in the volume schedule. We sum

over all possible volume levels (only one Vl will be non-

zero) and multiply by the total transmitted volume.

Equations 3 and 4 ensure that only one volume pricing

level indicator variable Vl is non-zero and that the price

being charged for transmission is correct based on the total

bandwidth consumed. The next constraint (Eq. 5) ensures

that the total size of all object collections to be stored at

server j does not exceed capacity at that server. Equation 6

ensures that all requests for objects are honored by making at

least one of the flow paths from the request origin to the

object collection equal to 1. When a node has no requests for

objects from within a particular object collection, then no

outgoing path to a copy of the collection should be activated.

That is, when rik = 0, then the constraint becomes redundant

as both the left and right sides become 0.

The last constraint sets (Eqs. 7, 8) are linking equations

which stipulate that a copy of the object collection must exist

at any node which is the receiver of a request for an object

from within that collection. According to Eq. 7, ifP
i Xijk [ 0 then Yjk must be 1 and if

P
i Xijk ¼ 0 then Yjk is

unrestricted. In Eq. 8, if
P

i Xijk ¼ 0 then Yjk must be 0 and ifP
i Xijk [ 0 then Yjk is unrestricted. Thus, the combination

of Eqs. 7 and 8 ensure that if any object request flow comes

into a node there must be a copy of the object collection at

that node, and if no flow comes in, there will not be a copy.

In the second term of Z2, the product of Vl and Xijk creates

a quadratic expression. To simplify the computational

aspects of the model, we substitute kijkl ¼ VlXijk 8 i; j; k; l

in Z2 and utilize the linearization suggested by Plastria [24]

to obtain:

kijkl � Vl� 0 8i; j; k; l ð9Þ

kijkl � Xijk � 0 8i; j; k; l ð10Þ

Vl þ Xijk � kijkl� 1 8i; j; k; l ð11Þ

kijkl 2 0; 1f g 8i; j; k; l ð12Þ

With this linearization, objective function Z2 reduces to:

Min Z2 ¼
X

j

X

k

cjbkYjk þ
X

l

X

i

X

j

X

k

flrikokkijkl

where i 6¼ j ð13Þ

We can now construct the linear version of the

multiobjective CDN problem with volume-based pricing

as:

P2 : Min Z1 ¼
X

i

X

j

X

k

rikdijXijk ð14Þ

Min Z2 ¼
X

j

X

k

cjbkYjk þ
X

l

X

i

X

j

X

k

flrikokkijkl ð15Þ

s:t:

Equations (3)� ð12Þ

Obviously, Eqs. 14 and 15 are Eqs. 1 and 13, but have been

renumbered for completeness.

4 Solving the multiobjective CDN model

Clearly, the two objective functions in P2 are at odds. In

order to reduce the number of hops necessary to reach

content as expressed in Z1, content needs to be cached at

many locations. This may also reduce content delivery
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charges which are based on consumed bandwidth. How-

ever, caching at many locations increases the total storage

and administrative costs in Z2.

Because of the incommensurate units of the two

objectives (hops vs. dollars) it is not possible to combine

them into a single objective in the traditional sense. Past

approaches for developing compromise solutions have

ranged from goal programming with an imposed preemp-

tive priority structure to constructing an ‘‘efficient frontier’’

which serves as a surface of trade-offs that may be

examined by the decision maker. In order to facilitate

analysis of the model, we will use another established

procedure: fuzzy compromise programming.

Fuzzy compromise programming was first suggested by

Zimmerman [33–36] and has since been applied by

numerous authors, including Bit [5–7], Chang et al. [8],

Coffin and Taylor [10], Adb El-Wahed and Lee [1], Li and

Lai [20], and Topaloglu and Selim [28]. By obtaining a

marginal evaluation of each objective Zg (a mapping which

tells us to what degree the decision x [ X makes the

objective Zg close to its aspiration level Lg) for

g = 1,…G where G is the total number of objective

functions, we can aggregate these marginal evaluations to

find a compromise solution at which the global evaluation

of the synthetic membership degree of optimum for all

objectives is maximum [20]. We follow the basic outline of

Li and Lai [20] in applying the fuzzy compromise princi-

ple. The following steps are adapted from their approach.

For each minimization objective Zg, a value Ug can be

viewed as the highest acceptable level of achievement, and

Lg can be viewed as the aspired level of achievement.

Hopefully, these values could be supplied by a domain

expert or decision maker such that they reflect the prefer-

ences of the decision maker. Alternatively, these values can

be determined by solving each of the 2g single-objective

problems to obtain

Ug ¼ max Zg xð Þ x 2 X; g ¼ 1; . . .;G

Lg ¼ min ZgðxÞ
ð16Þ

Once Ug and Lg have been determined, the marginal

evaluation for each objective can be found by:

/gðxÞ ¼
1 if ZgðxÞ� Lg
ZgðxÞ�Ug

Lg�Ug
if Lg� ZgðxÞ�Ug

0 if ZgðxÞ�Ug

8
<

: ð17Þ

where ug(x) is the fuzzy membership value of x on the

interval [0,1] for objective function g.

Given the marginal evaluations ug(x) for a given deci-

sion x, the final task is to determine a global subjective

evaluation l(x) with respect to all of the objectives. The

optimal compromise solution is the decision at which

the global subjective evaluation value is the maximum. The

preferences of the decision-maker are reflected in the

weights applied to each marginal evaluation in arriving at

l(x). Specifically, for a set of preference weights w = (w1,

w2, …, wg) which are normalized to sum to one, we are

interested in an aggregation operator Uw:[0,1]G ? [0,1]

such that:

lðxÞ ¼ Uwðu1ðxÞ; u2ðxÞ; . . .;ugðxÞÞ ð18Þ

Several aggregation operators have been suggested in the

literature. Li and Lai [20] discussed a family of aggregation

operators called the weighted root-mean power operators,

and discussed five variations within this family. The two

most widely used operators from within this family are the

weighted arithmetic mean and the conjunctive mean. The

conjunctive mean operator, sometimes referred to as the

‘‘min’’ operator because it seeks to choose the maximum

from among the minimum of the marginal evaluations of the

objective functions, has been widely applied, but has

disadvantages. Li and Lai [20], in their summary of

aggregation operators, point out that the ‘‘min’’ operator is

non-compensatory [31]. That is, the solution from ‘‘min’’

focuses on the worst situation and cannot be compensated by

other members that are very good. Also, Lee and Li [19]

showed that the ‘‘min’’ operator does not guarantee non-

dominated solutions. For these reasons, we will utilize the

weighted arithmetic mean operator whereby the decision-

maker can see the results obtained from different preference

weights and choose the solution which is most preferred.

Applying the fuzzy compromise programming approach

to our multi-objective CDN model P2, for x [ X we obtain

the following:

P3 : Max lðxÞ ¼ w1u1ðxÞ þ w2u2ðxÞ ð19Þ

s:t:

Equations ð3�12Þ
U1 ¼ max Z1ðxÞ; L1 ¼ min Z1ðxÞ where Z1ðxÞ is equation ð14Þ
U2 ¼ max Z2ðxÞ; L2 ¼ min Z2ðxÞ where Z2ðxÞ is equation ð15Þ

/1ðxÞ ¼
1 if Z1ðxÞ� L1
Z1ðxÞ�U1

L1�U1
if L1� Z1ðxÞ�U1

0 if Z1ðxÞ�U1

8
<

:

/2ðxÞ ¼
1 if Z2ðxÞ� L2
Z2ðxÞ�U2

L2�U2
if L2� Z2ðxÞ�U2

0 if Z2ðxÞ�U2

8
<

:

At this point, we should reiterate that solving P3 is a

decision problem for the CDN provider, and choosing from

among the eventual candidate solutions is a task for the

content provider. Because the complete set of cache

locations, and therefore the possible instances of decision

variables Xijk and Yjk, are known only to the CDN provider,

this model can only be solved by the CDN provider. In the
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next section, we give an example of the process by which

the CDN provider can develop and present the set of best

solutions to the content provider.

5 A numerical example

In order to illustrate application of the model, we present a

case example. We assume ten proxy servers which can

receive and service end-client requests or transfer the

request to another server which has a copy. This is sub-

stantially larger than the three to five proxies used in

illustrative examples by Bektas et al. [4] and Pallis and

Vakali [22]. Since thousands of end-clients could be

attached to each proxy, such a network could represent a

sizable subset of a large CDN network, or could represent

the entire network for a smaller CDN provider. Because of

the large number of connected end-clients, the aggregate

object request volume at each proxy can be very large. We

are not concerned with the nature of the connectivity of the

end-clients but with the resulting request volume at each

proxy and how to serve those requests by providing cached

copies of content.

We further assume five large object collections to be

cached, and three levels of volume-based bandwidth pric-

ing. Table 2 details the parameters for the example. While

this case example is hypothetical, all of the parameters in

Table 2 are based on typical values from the literature. For

example, to arrive at the storage cost of $3 to $8 per GB per

month, we consider what the CDN would charge the con-

tent provider, which is based on the cost of physical storage

media, cost of maintenance and operations personnel, etc.,

and an appropriate profit margin. While we often think of

storage as a cheap commodity because of the desktop as a

frame of reference, enterprise-class storage devices with

their power supplies, cooling fans, housing racks, and built-

in redundancy are obviously much more expensive.

Because enterprise-level mass storage devices with multi-

terabyte capacities can run into the hundreds of thousands

of dollars, we typically see an industry average of $25 to

$75 per purchased gigabyte of redundant arrays of inde-

pendent disks (RAID). Assuming a useful life of 2 years,

the cost to purchase enough memory to provide a gigabyte

of storage for a 30 day period using these industry averages

would be between $1.05 and $3.15. Using these costs for

procuring the media and adding a reasonable amount for

overhead and profit, storage costs per gigabyte per month

can easily reach $3 to $8. For many of the other parameters

which have multiple values, such as the request volumes

for collections which originate at many different locations

(rik), we have used uniform distributions to generate the

multiple values. Because the values of these parameters

could be any value over some typical range, we use the

uniform distribution which is a model of random (equally

likely) outcomes.

Using the values from Table 2 to parameterize the

model, we arrive at a model instance with 4,668 variables

and 2,057 constraints. For a model of this size, translation

into a solvable format can be a formidable task. To make

this task easier, we developed a code generator written in

Visual Basic which accepts the parameters as input and

produces the model code in CPLEX format. Solution times

in CPLEX for the full set of following problems ranged

from 1.09 to 447.64 seconds on a typical desktop machine.

In order to apply fuzzy multi-objective analysis, we first

determine the upper and lower bounds for the two objec-

tives by solving the model to determine the maximum and

minimum values possible for each objective. We obtain

bounds on hops (Z1) of U1 = 598,640 and L1 = 218,920.

Likewise, we obtain bounds on cost (Z2) of

U2 = $200,964.80 and L2 = $40,851.60. Using these

bounds and the parameters from Table 2, we obtain the

solutions in Table 3 for various combinations of the

weights (w1, w2). In addition to columns for the weights

and values of the two objectives Z1 and Z2, Table 3 also has

columns which indicate which volume-based pricing level

is in effect for each solution (V1, V2, or V3) and the values

of the fuzzy membership functions represented by each

solution (u1 and u2). From Table 3, it is easy to see the

nature of the tradeoffs as the decision maker’s emphasis

switches between hops and cost. For weights of (0,1) where

cost is emphasized and hops are given no weight, the lower

bound cost is achieved along with the upper bound value

for hops by using fewer cached copies of the collections

resulting in lower storage costs, and allowing the for-

warded request bandwidth volume to rise into the second

pricing tier (above 50 TB) where we get more favorable

bandwidth rates. When the weights are (1,0), we see the

Table 2 Parameters for the case example

Parameter Value

# of nodes i and j 10

# of caches k 5

# of volume price levels l 3

rik U(1,000, 4,000) per month*

dij U(3, 8)*

bk U(1,000, 3,000) GB*

ok U(.1, 1) GB*

sj U(2,000, 5,000) GB*

cj U($3,$8) per GB per month*

ql (0, 50 TB, 100 TB) per month

fl ($.40, $.20, $.05) per GB

* U(a, b) indicates that the parameters are uniformly distributed over

the range a to b

8 Inf Technol Manag (2012) 13:1–15

123



lowest possible hops but at the largest possible cost. In this

case, more copies are cached to reduce the necessary hops,

resulting in more storage cost and a bandwidth usage in the

most expensive range (below 50 TB) for those requests

which must be forwarded. For all of the compromise

solutions in between, we see solutions which achieve more

of a balance for the membership functions. For example, at

(.5,.5) it is possible to choose a solution which represents a

relative achievement of .5679 on a scale of 0–1 for our goal

of making hops as low as possible, and a relative

achievement of .7791 for our goal of making cost as low as

possible. Of course, it is up to the decision maker to decide

among the comprise solutions as to which represents the

best combined achievement from their perspective.

To further examine the nature of the tradeoffs in the

presence of volume-based pricing, we run a second experi-

ment using a higher value for the volume discount point Q2

of 70 TB. Table 4 gives the results for this scenario.

With a higher threshold for the volume pricing dis-

count, the (0,1) solution pushes the request volume to the

highest level (above 100 TB) in order to achieve the lowest

cost. This high request volume, and consequently low level

of cached copies, pushes the number of hops to over

886,000. As we increase w1 and lower w2 gradually putting

more emphasis on hops, the request volume decreases into

the second tier of volume pricing, and then at (.3, .7)

decreases into the first or lowest tier of volume pricing. As

in the first scenario, the compromise solutions offer the

decision maker wide latitude in deciding which solution

best meets their preferences for hops versus cost.

As a final illustration, we graph the results of Tables 3

and 4 to show the tradeoffs. Figure 1 is a graph of hops for

the volume discount levels of 50 and 70 TB plotted against

w1 (we could just as easily have graphed against w2, and

the graphs would be reversed starting at the lowest level of

hops and then increasing). This plot illustrates the con-

siderable effect that volume pricing thresholds have when

hops are given a weight of 0 (a difference of almost

300,000 hops). When hops are given a weight of one,

volume pricing thresholds have no effect as our efforts shift

to minimizing hops regardless of the pricing level and cost.

In Fig. 2, we graph cost for the volume discount levels of

50 and 70 TB again plotted against w1. Here we see that as

the weight on hops (w1) increases up to about .7 or .8

causing cost to rise, we are able to achieve a lower cost for

the 70 TB solution. Once again, this is because cost

Table 3 Results for the case

example when Q2 = 50 TB
(w1, w2) Z1 (hops in 1,000s) Z2 (in ‘000s) V1 V2 V3 u1 u2

(0, 1) 598.64 40.85 0 1 0 0 1

(.1, .9) 579.44 41.08 0 1 0 .0506 .9986

(.2, .8) 496.18 48.58 0 1 0 .2698 .9517

(.3, .7) 453.88 55.66 0 1 0 .3812 .9075

(.4, .6) 426.36 62.21 0 1 0 .4537 .8666

(.5, .5) 382.98 76.22 0 1 0 .5679 .7791

(.6, .4) 291.74 124.49 1 0 0 .8082 .4776

(.7, .3) 239.22 165.80 1 0 0 .9465 .2196

(.8, .2) 221.08 192.27 1 0 0 .9943 .0543

(.9, .1) 221.08 192.27 1 0 0 .9493 .0543

(1, 0) 218.92 200.96 1 0 0 1 0

Table 4 Results for the case

example when Q2 = 70 TB
(w1, w2) Z1 (hops in 1,000s) Z2 (in ‘000s) V1 V2 V3 u1 u2

(0, 1) 886.22 46.70 0 0 1 0 1

(.1, .9) 673.78 47.31 0 1 0 .3184 .9960

(.2, .8) 647.38 48.50 0 1 0 .3579 .9884

(.3, .7) 496.18 59.10 1 0 0 .5845 .9197

(.4, .6) 480.70 61.22 1 0 0 .6077 .9059

(.5, .5) 437.04 68.94 1 0 0 .6731 .8559

(.6, .4) 363.86 89.75 1 0 0 .7828 .7209

(.7, .3) 312.58 111.41 1 0 0 .8596 .5803

(.8, .2) 248.16 157.15 1 0 0 .9562 .2840

(.9, .1) 221.08 192.27 1 0 0 .9968 .0563

(1, 0) 218.92 200.97 1 0 0 1 0
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includes not only the cost of the bandwidth charges but also

the storage cost, and by pushing request volume up over

70 TB in order to get the pricing discount we are able to

cache fewer copies. For this case example, the 50 TB

bandwidth volume discount level results in a tighter band

of values for Z1 and Z2 in comparison to the 70 TB dis-

count level. Stated differently, with a 50 TB discount

policy we can achieve lower hops at virtually every level of

preference weights but with a higher cost in relation to the

70 TB discount policy.

Obviously, these results are indicative of the parameters

used in this illustrative case. While the chosen parameters

are based on realistic values from the CDN literature, we

do not claim that this set of decision outcomes would be

either typical or appropriate to any specific company.

Rather, our goal is to illustrate the decision process and the

types of decision problems which are supported by this

process. While other parameterizations might show

enhanced (or diminished) effects of some aspects in rela-

tion to this example, our analysis clearly establishes the

nature of the cost/performance tradeoff and the effects of

volume-based pricing on these tradeoffs. Furthermore, our

analysis illustrates the power of the multi-criteria approach

and the depth of information related to tradeoffs provided

by this approach.

6 The impact of pricing decisions

In this section, we further examine the effect of pricing

decisions by the CDN provider on the choice of a best plan.

In the previous example, we assumed ql = (0, 50, 100)

terabytes per month and fl = ($.40, $.20, $.05) per giga-

byte, then examined the effect of an increase in the

required bandwidth level to 70 terabytes to achieve the

first-level quantity discount. While this increase in

threshold had significant impact, this was not a signifi-

cantly different pricing strategy but was more an induce-

ment for CDN users to utilize more bandwidth in an effort

to reduce transmission cost. In this section, we examine the

effects of a dual pricing strategy which might be designed

to reward or attract smaller customers (lower bandwidth

usage) while still providing quantity discount opportunities

for the larger customers. Alternatively, it could represent a

current and a proposed pricing schedule that are part of an

analysis preceding a contemplated price change.

We assume that the first pricing schedule shown above

is still in effect, but that additionally we consider a pricing

schedule whereby fl = ($.35, $.20, $.05) per gigabyte and

ql = (0, 60, 100) terabytes per month (storage costs are not

changed because, though just as important as transmission

costs, they are typically less volatile and competitive than

transmission costs). In other words, the base price for

bandwidth usage below the volume price threshold is lower

by $.05 per gigabyte. However, in this schedule the

threshold to qualify for a volume discount on bandwidth is

raised from 50 to 60 terabytes per month. We keep the

other parameters at their original levels to facilitate com-

parison. The results of the original pricing schedule and the

new pricing schedule are shown in Table 5.

Several points can be inferred from the table for this

particular content provider with their pattern of request

volume. First, when cost is deemed to be much more

important than hops as indicated by weight vectors such as

(0,1) or (.1,.9), the original pricing schedule is better. The

lower base bandwidth cost of the new pricing schedule

does not benefit this content provider, as their request

volume is such that they are better served by adopting a

plan with fewer copies and more required bandwidth which

takes advantage of the volume discount price. However,

because the threshold for volume price is increased in the

new schedule, they would have to push the bandwidth
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beyond the level required in the original plan, resulting in

higher cost (about $4,500 per month).

Next, when performance is deemed to be more impor-

tant, as represented by weight vectors such as (1, 0) or (.9,

.1), the new pricing schedule seems to be better. With no

increase in hops, we are able to achieve slightly lower costs

by about $2,000 per month.

Finally, when cost and hops are viewed to be about

equally important, the decision is much less clear and

requires the content provider to determine which outcome

would be preferable. At a weight vector of (.5,.5), cost is

slightly lower for the new price schedule, while hops are

somewhat lower for the original price schedule. Also, the

preference point at which the content provider would fall

out of the volume discount range changes from (.6, .4) in

the original plan to (.4, .6) in the new plan.

As with any multi-criteria solution, in the end the best

solution is defined by how the decision maker views the

tradeoffs between cost and performance. However, we

believe this example further illustrates the type of infor-

mation which this caching model can provide. For the CDN

provider, such feedback, when coupled with knowledge of

the general preferences of their customers for low cost

versus high performance, could be beneficial in deciding

how to price their CDN services. For the content provider,

this information could be invaluable in choosing from a

tiered pricing structure from their chosen CDN provider, in

negotiating a service-level agreement, or in choosing

between CDN providers.

7 Experimental results

In any study where a model must be instantiated with

typical parameters, the model results are dependent on

those parameters. Even in a study such as this one where

the parameters are chosen to be typical of the industry, the

results are still specific to those choices. In an effort to

offer broader managerial insights, we conclude with an

experiment which uses a broad range of parameter values.

The CDN model has two distinct sets of parameters. The

parameters rik, dij, bk, ok, and sj are network descriptors

which define the CDN provider’s available servers and

their corresponding locations and capacities, and the con-

tent provider’s caches and their size and popularity. The

parameters fl, ql, and cj are the bandwidth cost, quantity

discount threshold, and storage cost, and reflect the pricing

policy set by the CDN provider. In this experiment, we will

utilize the network descriptors to generate several networks

to serve as our base test problems, and then systematically

vary the two cost parameters and the quantity discount

threshold to allow us to analyze the effectiveness of

varying pricing policy combinations. Specifically, we

generated 20 hypothetical base network configurations

using random values selected from uniform ranges for each

of the network parameters. The uniform ranges were con-

structed to represent low-to-high value ranges for each of

the network structure parameters, so that the 20 test

problems represent a varied but structurally valid set of

hypothetical networks.

Next, we defined three levels (low, medium, and high)

for each of the two cost parameters and the threshold

parameter, yielding 27 potential organizational pricing

policy strategies. These cost parameters may again be

ranges, such as in the case of storage costs at the servers,

since each server will have a different storage cost. For

example, the ‘‘low storage cost’’ range is from $2 to $4 per

gigabyte per month, the ‘‘medium storage cost’’ range is

from $4 to $6 per gigabyte per month, and the ‘‘high

storage cost’’ range is from $6 to $9 per gigabyte per

month. Then, we solved each of the 20 test problems for

the 27 controlled combinations of cost parameters, with

Table 5 A comparison of two price schedules

(w1, w2) Original pricing schedule New pricing schedule

Z1 (hops in 1,000s) Z2 (in ‘000s) V1 V2 V3 Z1
0 (hops in 1,000s) Z2

0 (in ‘000s) V1
0 V2

0 V3
0

(0, 1) 598.64 40.85 0 1 0 654.02 45.30 0 1 0

(.1 ,.9) 579.44 41.08 0 1 0 587.50 45.31 0 1 0

(.2, .8) 496.18 48.58 0 1 0 537.16 49.33 0 1 0

(.3, .7) 453.88 55.66 0 1 0 530.52 50.13 0 1 0

(.4, .6) 426.36 62.21 0 1 0 409.52 72.86 1 0 0

(.5, .5) 382.98 76.22 0 1 0 363.86 87.45 1 0 0

(.6, .4) 291.74 124.49 1 0 0 312.58 109.24 1 0 0

(.7, .3) 239.22 165.80 1 0 0 263.38 141.30 1 0 0

(.8, .2) 221.08 192.27 1 0 0 239.22 163.86 1 0 0

(.9, .1) 221.08 192.27 1 0 0 221.08 190.43 1 0 0

(1, 0) 218.92 200.97 1 0 0 218.92 199.05 1 0 0
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three different decision maker preference structures

(weight sets) for each combination, representing preference

given to hops, preference given to cost, and equal prefer-

ence. This gives 27 9 3 = 81 experimental combinations

or cells with 20 model runs per cell (one for each of the

hypothetical network configurations), yielding a total of

1,620 runs. While the test networks were generated man-

ually, the combination of a Visual Basic code generating

program for creating the CPLEX code and utilization of the

Concert optimizer in CPLEX for automating the solution of

the models allowed us to make the task manageable. In the

experimental cells, we report the average and a margin of

error at 95% confidence level across the 20 test problems,

for cost in Table 6 and for hops in Table 7.

In general, we observe that the margin of error is rela-

tively small compared to the average values reported in

Tables 6 and 7, implying that the 95% confidence intervals

are quite narrow. While some of the outcomes are pre-

dictable, such as average CDN cost getting relatively

higher as we move from low-cost parameter combinations

in the upper left corner of Table 6 toward high-cost com-

binations at the bottom right of Table 6, other insights are

perhaps more interesting. Several of these are apparent

from the tables:

• The impact of changing preferences has an asymmetric

effect on costs. Moving from a baseline of equal

preferences (.5, .5) to an emphasis on cost reduction (.2,

.8), the relative decrease in cost is much less than the

relative increase in cost which occurs when we move

from equal preference to a preference on hops (.8, .2).

This can be seen from the first three columns of Table 6

where, across all levels of fl and ql, the objective

function impact of moving from an equal weighting

strategy to an emphasis on cost is an average cost

reduction of $16,500 or approximately 28%, while a

change to emphasis on hops produced an average cost

increase of $45,433, or slightly over 77%. This

asymmetry is also present in columns 4–6 and columns

7–9 and can be clearly seen on the graph in Fig. 3.

• The impact of changing preferences is much more

symmetric in terms of the resulting number of hops.

Looking at the first three columns of Table 7, moving

from a baseline of equal preference (.5, .5) to an

emphasis on cost (.2, .8) caused an average increase in

hops of 140,408, or about 48%. An equivalent change

in preference on hops to (.8, .2) reduced hops by an

average of 132,319 or approximately 45%. This linear

trend can also be seen in the graph in Fig. 4.

• This asymmetry on cost and symmetry on hops implies

that as we emphasize hops reduction, we will pay an

increasingly expensive premium to achieve that reduc-

tion. Stated another way, the cost to hops ratio is not
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uniform across the range of preferences. As we strive to

reduce the number of hops by giving it greater weight

in the model, the relative cost required to achieve this

hops reduction increases, resulting in very high

monthly costs for the lowest level of hops (See

Fig. 5). Looking toward the upper left and lower right

corners of Tables 6 and 7 (where the lowest and highest

hops and cost tend to occur), in order to reduce hops by

60%, we must increase monthly expenditures by 6.69

times (from $35,760 to $239,430).

• Storage cost fluctuations seem to have a much greater

effect on cost than on hops. In Table 6, if we pick any

preference structure, such as (.5, .5) in columns 2, 5,

and 8, and look at the increase in cost as we increase Cj,

the increase is significant. As we go from Low Cj to

Medium Cj, across all levels of fl and ql the average cost

increases by 46%. Going from columns 5 to 8, average

cost increases by 53%. The corresponding changes in

storage cost levels result in hop decreases of 5 and 3%,

respectively. This same behavior is true for the other
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preference structures. Therefore, moving in reverse

from higher storage cost to lower storage cost, we may

be able to reduce storage costs and therefore overall

cost significantly without incurring any substantial

increase in hops. As a result, organizations working

on a thin margin may benefit by working diligently to

secure the lowest possible storage rates from their CDN

provider.

• Hops are much more sensitive to bandwidth charges

when minimizing hops is the secondary objective as

opposed to the primary objective, but only when

storage cost is low. In Table 7, columns 1 and 3,

suppose we compare row 1 (Low fl, Low ql) to row 9

(High fl, High ql). In column 1, hops increase by 30% as

we move from the lower to higher bandwidth price

combination. In column 3, where we have a preference

structure that places more emphasis on hops, the

corresponding increase in hops is only 5%, illustrating

that when we prioritize hops we are able to find

solutions which better mitigate the high bandwidth

charges. If we look at columns 4 and 6 for medium

storage cost, the changes do not display the same

behavior and are basically equal (5.6 and 5.7%). This is

also true for high storage cost in columns 7 and 9,

where the increases are 2 and 4%. While the ability to

reduce bandwidth costs when emphasis is placed on

hops is to be expected, the degree of dependence on

low storage cost for this effect is less intuitive but likely

stems from the fact that the solution needs the

flexibility of being able to place numerous cached

copies (at a relatively low cost) in order to reduce hops

and thereby mitigate the effect of high bandwidth

charges. As storage cost increases, this flexibility is

removed. This implies that when choosing a CDN

vendor, one very important factor is to make sure that

the storage cost structure of the vendor is low enough to

provide adequate flexibility to accommodate aggressive

hops and bandwidth control.

While other inferences may be drawn from these

experimental results, in the end any conclusions which we

draw are still influenced to some degree by the structure of

the experimental networks and the chosen parameters. The

main contribution continues to be demonstration of the

insight that the modeling process can provide to a CDN

provider and a content provider, once their unique cost and

demand structures have been encoded.

8 Conclusions

Developing a caching plan which simultaneously provides

good performance, as measured by low latency and hops,

and low storage and bandwidth costs is a formidable task.

When the CDN environment is further complicated by

service-level agreements which include bandwidth volume

pricing levels, the task is even more difficult. In this paper,

we have presented a model for analyzing the multiple

objectives of cost and performance within the CDN cach-

ing problem. This model not only treats these two objec-

tives but also allows for the inclusion of bandwidth volume

discount pricing. We utilize a case example to depict the

feasibility of solving this model for a CDN of reasonable

size and illustrate the depth of information related to

preference tradeoffs. The example clearly defines the nat-

ure of the tradeoffs as the decision maker’s emphasis

switches between hops and cost. When cost is emphasized

and hops are given no weight, fewer cached copies of the

collections were used resulting in lower storage costs and

in forwarded request bandwidth volume which rise into a

volume discount pricing tier where there are more favor-

able bandwidth rates. When the weights emphasize hops,

we see the lowest possible hops but at the largest possible

cost. In this case, more copies are cached to reduce the

necessary hops, resulting in more storage cost and a

bandwidth usage in the most expensive price range (below

any volume price levels) for those requests which must be

forwarded. For all of the compromise solutions in between,

we see solutions which achieve more of a balance. In a

variation of this example with a higher threshold for the

volume pricing discount, when cost is emphasized the

solution pushes the request volume to the highest volume

discount level in order to achieve the lowest cost, and as we

increase w1 and lower w2 gradually putting more emphasis

on hops, the request volume decreases into the second tier

of volume pricing, and eventually into the first or lowest

tier of volume pricing.

In a second example which featured two base bandwidth

prices with different thresholds for discounts, we observed
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a clear dominance by one of the pricing schemes when cost

is emphasized, with a shift to the other pricing policy being

clearly preferred when hops are emphasized. This shows

that for the CDN provider, the caching model could be

beneficial in deciding how to price their CDN services. For

the content provider, the model solutions could be

invaluable in choosing from a tiered pricing structure from

their chosen CDN provider, in negotiating a service-level

agreement, or in choosing between CDN providers. In a

final experiment with a broad set of possible network and

cost parameters, we provided some general insights into

cost/hops tradeoffs.

Balancing multiple objectives such as cost and perfor-

mance in a complex decision environment like CDN

caching is a challenging task. We believe that a model such

as this one, further customized to accommodate any addi-

tional CDN factors that might be unique to a particular

situation, could provide valuable assistance to a CDN

decision maker or content provider.
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