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In this article, we report on a research project where we applied augmented-neural-networks (AugNNs) approach
for solving the classical bin-packing problem (BPP). AugNN is a metaheuristic that combines a priority rule
heuristic with the iterative search approach of neural networks to generate good solutions fast. This is the first
time this approach has been applied to the BPP. We also propose a decomposition approach for solving harder
BPP, in which subproblems are solved using a combination of AugNN approach and heuristics that exploit the
problem structure. We discuss the characteristics of problems on which such problem structure-based heuristics
could be applied. We empirically show the effectiveness of the AugNN and the decomposition approach on many
benchmark problems in the literature. For the 1210 benchmark problems tested, 917 problems were solved to
optimality and the average gap between the obtained solution and the upper bound for all the problems was
reduced to under 0.66% and computation time averaged below 33 s per problem. We also discuss the
computational complexity of our approach.

Keywords: bin packing; heuristics; neural networks; optimisation

1. Introduction

The one-dimensional bin-packing problem (BPP)

involves minimising the number of fixed-capacity

bins required to pack n items of various sizes (or

weights). This problem occurs frequently in distribu-

tion, production and task/resource allocation and

cutting stock problems. For example, in distribution,

packing containers for trucks/trains involves the BPP.

In production, scheduling tasks on machines in shifts

can be considered a BPP if we treat shifts as bins, and

tasks as items. Like most optimisation problems, the

BPP belongs to the class of NP-hard problems (Garey

and Johnson 1979; Martello and Toth 1990). Many

heuristics and metaheuristics exist in the literature for

generating good approximate solutions fast for the

BPP. Heuristics are based on some kind of priority or

dispatching rule, such as ‘first-fit descending’ (FFD) or

‘best-fit descending’ (BFD). These heuristics produce

good approximate solutions very fast and therefore can

be applied to large problems, but they fail to make use

of problem-specific structures and leave significant

gaps from the optimal. Metaheuristics include iterative

approaches such as tabu search, simulated annealing

(SA) and genetic algorithms (GAs). These techniques

find improved solutions, because they search a larger

solution space. Depending on the number of iterations

required, these metaheuristics may take very long and

therefore not be suitable for solving very large prob-

lems in reasonable time.
In this article, we apply a neural network-based

approach called augmented neural networks

(AugNNs) for the BPP, and also a decomposition

approach involving heuristics that exploit the problem

structure. AugNN is a metaheuristic that takes advan-

tage of both the heuristic and the iterative search

approach. In this approach, the BPP is formulated as a

neural network of input, hidden and output layer of

nodes, with weights associated with links between

nodes, much like in a neural network. Input, output

and activation functions are designed to (1) capture

and enforce the constraints of the problem, and

(2) apply a particular heuristic, such as FFD or

BFD, to assign an item to a bin in each iteration.

After n iterations, or an epoch, n assignments take

place and a feasible solution is generated. Weights are

modified after each epoch, allowing a neighbouring

feasible solution to be generated in subsequent epochs.

If improvements are found, the weights are reinforced,

otherwise not. After some epochs, the network learns a

good set of weights that generate good solutions. Thus,

a non-deterministic local search is performed by

perturbing the data using weights. This approach was
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first introduced by Agarwal, Pirkul, and Jacob (2003)
for the task-scheduling problem.

We apply the AugNN approach in conjunction
with two well-known heuristics, namely FFD and
BFD, on many benchmark problem sets in the
literature. These problem sets fall under three levels
of difficulty – easy, medium and hard. For the easy and
medium problems, the AugNN approach found the
best-known upper-bound solutions in 909 out of 1200
problems and improved upon the heuristic solution on
the remaining problems and gave an overall gap of
0.375% from known optimum solutions. For the hard
benchmark problems, the AugNN approach failed to
provide very good results in reasonable time. For these
hard problems, we propose a decomposition approach
in which we decompose the problem into subproblems
and solve the subproblems using heuristics that exploit
the structure of the problem. Using this decomposition
strategy, upper-bound solutions were found for 8 out
of 10 hard problems and within one bin of the upper
bound for the remaining two problems. All 10
solutions were found in less than 0.25 s each.

We thus make a twofold contribution to the bin-
packing literature. First, we propose an AugNN
formulation for the first time for the BPP and show
its effectiveness in terms of improving upon a heuristic
solution. Second, we propose new heuristics that
exploit the problem structure and solve the BPP
using a decomposition strategy. Although the problem
structure-based heuristic, as the name suggests, may
not be generalised, the lessons learnt from solving the
hard benchmark problems may be applied to other
BPPs. We discuss the conditions under which some
types of problem structure-based heuristics can be
applied.

The rest of the article is organised as follows. In
Section 2, we review the relevant bin-packing litera-
ture. We explore the various heuristics used for this
problem. In the following section, we provide the
details of the AugNN formulation for the BPP. We
explain the neural-network architecture for the BPP
and present all the functions needed to solve the
problem. Search strategies are also discussed. Section 4
describes our decomposition approach, including the
problem structure-based heuristics for solving the hard
benchmark problems. In Section 5, we present our
computational results. Section 6 provides the
summary, conclusions and suggestions for future
research.

2. Literature review

Since the BPP is NP-hard in the strong sense (Garey
and Johnson 1979), a polynomial time algorithm to

solve it optimally does not exist and is unlikely to be
discovered in the future. Scholl, Klein, and Jtirgens
(1997) provide a good survey of extant solution
procedures, and also propose a new heuristic that is a
combination of tabu search and a branch-and-bound
procedure based on known and new bound arguments
and a new branching scheme. They study the well-
known heuristics such as FFD, BFD and worst fit
descending (WFD) as well as the B2F heuristic, which
works like FFD until a bin is filled then tries to
exchange the smallest item assigned to the bin with two
small-sized items not currently assigned such that the
residual capacity is decreased. Valerio de Carvalho
(1999) gives an exact algorithm based on column
generation and branch-and-bound. Gupta and Ho
(1999) give a heuristic called ‘minimum bin slack’ to
solve the BPP. This heuristic is bin centric. At each
step, an attempt is made to find a set of items (packing)
that fits the bin capacity as much as possible. The
worst-case performance of heuristics for BPP has been
studied in Anily, Bramel, and Simchi-Levi (1984).

Many metaheuristics have been proposed in the
bin-packing literature, such as GAs, tabu search, SA
and ant colonies. However, no study has focused on a
neural-network approach in the bin-packing literature.
In most cases, GAs were found to be relatively
inefficient. As explained in Reeves (1995), the com-
plexity of the traditional GAs was high because of the
length of the chromosome string required. Many of the
solutions generated in each generation were infeasible
and checking the feasibility of each generated solution
was very time consuming. Reeves (1995) proposed
hybrid GAs aimed at improving the performance of
traditional GAs. The performance improved for small-
size problems, both in terms of probability of finding
the optima and the processing time. However, the
solution quality for the larger size problems was not
improved. Another GA approach was used in
Corcoran and Wainwright (1993). Performance is
improved using two mechanisms – sliding window
mechanism to identify highly fit sequences and reduc-
tion mechanism to preserve fit sequences. Therefore,
highly fit members can quickly dominate the popula-
tion and cause the GA to converge more quickly. SA
approach has also been used in Brusco, Thompson,
and Jacobs (1997) and Rao and Iyengar (1994). The
performance of SA with morphing is sensitive to
parameter choices. They have shown that no single
version of their heuristic particularly dominates other
procedures in terms of solution quality. However, there
is a notable difference in performance associated with
the different cooling factors.

Several new heuristics for solving the one-
dimensional BPP are presented in Fleszar and Hindi
(2002), Singh and Gupta (2007), Stawowy (2008) and
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Tambouratzis (2001). Some improvements on mini-
mal-bin-slack heuristic have been made. They show
that their heuristics are very efficient even though they
have high computational complexity. Variable neigh-
bourhood search has also been developed and used in
Fleszar and Hindi (2002). Singh and Gupta (2007)
developed a heuristic-based steady-state grouping
GA for the one-dimensional BPP. Stawowy (2008)
investigated the use of evolutionary-based heuristic to
the one-dimensional BPP. Unlike other evolutionary
heuristics used with optimisation problems, a non-
specialised and non-hybridised algorithm is proposed
and analysed for solving BPP. The set of experiments
confirmed that the proposed approach is comparable
to much more complicated algorithms (Stawowy 2008).
An incremental approach to bin packing is proposed
and a harmony theory artificial neural network is
employed in Tambouratzis (2001). The proposed
solutions suggest the exact placements of the objects
in the bins. For appropriate parameter values of the
harmony theory network, the smallest number of bins
required for packing all the objects (i.e. an optimal
solution) is consistently determined, while all optimal
solutions are settled upon with asymptotically equal
probability (Tambouratzis 2001).

Gradisar, Resinovic, and Kljajic (1999) proposed a
hybrid approach of combining pattern-oriented LP-
based method and the item-oriented sequential heuris-
tic procedure. Their objective of optimisation is cutting
order lengths into exact required number of pieces and
cumulating residual lengths into one piece suitable for
later use. They mentioned that the method is especially
useful when average number of pieces cut out of an
average stock length is large and when the cost of
changing the cutting pattern is low.

Alvim, Ribeiro, Glover, and Aloise (2004) propose
a hybrid improvement procedure for the BPP. Their
heuristics has several features such as the use of lower
bounding strategies, the generation of initial solution
by reference to the dual min–max problems, the use of
load redistribution based on dominance and improve-
ment process utilising tabu search. Their procedure
compares favourably with all other heuristics in the
literature. Their algorithm is the only one that has
succeeded in finding the best-known results for all
instances by using a single heuristics. Considering that
the best results previously reported in the literature
were not all of them obtained by a single heuristics our
proposed solution method is still encouraging.

Loh, Golden, and Wasil (2008) develop a new
procedure that uses the concept of weight annealing to
solve the one-dimensional BPP. Their procedure is
straightforward and easy to follow. They find that their
procedure produces very high-quality solutions very
quickly and generates several new optimal solutions.

Agarwal, Colak, and Deane (2010) proposed
NeuroGenetic approach combines AugNN and GA
search approaches by interleaving the two. They chose
these two approaches to hybridise, as they offer
complementary advantages and disadvantages. GA
needs thousands of iteration for good solution.
However, AugNN needs tens or hundreds of iteration
for good solutions. Hence, AugNN finds most of the
improvement early in the search process. However,
there is slow and steady improvement in the solution
quality in GA.

Agarwal (2009) develops theoretical justification
for the AugNN approach as a metaheuristic for solving
various optimisation problems. The key element of
AugNN approach is the transformation of the search
problem from the solution space of the given problem
to that of a search in the weight space of a temporary
weight matrix. Some weight adjustment strategies are
then used to converge to a good set of weights for a
locally optimal solution. While empirical results have
demonstrated the effectiveness of the AugNN
approach with regard to few other metaheuristics,
little theoretical insights exist which justify this
approach and explain the effectiveness thereof.
Agarwal (2009) develops a theorem which establishes
the existence of a weight matrix which gives an optimal
solution to the given problem. The existence of such a
weight matrix establishes the justification for the use of
the AugNN approach. Agarwal (2009) then discusses
various search strategies to bias the search towards a
good weight vector.

We thus make a twofold contribution to the bin-
packing literature. This is the first time AugNN
approach has been applied to the BPP. We show its
effectiveness in terms of improving upon a heuristic
solution. We also propose a decomposition approach
for solving harder BPP, in which subproblems are
solved using a combination of AugNN approach and
heuristics that exploit the problem structure. We
discuss the characteristics of problems on which such
problem structure-based heuristics could be applied.
We empirically show the effectiveness of the AugNN
and the decomposition approach on many benchmark
problems in the literature.

3. The AugNN framework

We first describe the problem formally and then
present the AugNN framework.

3.1. Problem description

The BPP consists of packing a set of items into
minimum number of bins such that the total size
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(or weight) does not exceed a maximum value
(bin capacity). In other words, we define a BPP as
follows:

. We are given a finite set of n items each having
a certain size.

. We define a group to be a subset of items such
that the total size of the group does not exceed
the bin capacity.

. The primary goal is to create a feasible
solution with the minimum number of groups.

3.2. Neural-network architecture

In the AugNN approach, we formulate the BPP as a
neural network. Figure 1 shows the neural-network
architecture and the correspondence with the BPP
graphically. Each item and each bin are represented as
a processing element (PE) of a neural network. The
item PE nodes, denoted by T1,T2, . . . ,Tn, constitute
the item layer, similar to the input layer of a neural
network. Similarly, the bin PE nodes, denoted by B1,
B2, . . . ,Bm, constitute the bin layer, which corresponds
to the hidden layer of a neural network. There is also

an output layer with one node, called the ‘final node’,

designed to capture the outputs of the bin and item

layers. For ease of formulation, we also add a dummy

initial node linked to the item-layer nodes. It keeps

track of the numbers of epochs and iterations. Nodes

in the item layer get an input signal from the initial

node through links. The item nodes are fully connected

to the nodes of the bin layer through links char-
acterised by weights, denoted by !1,!2, . . . ,!n. The

item nodes are also connected to the final node. Each

bin node, except the rightmost, is connected to the bin

node to its right. Bin nodes are also connected to item

nodes, to signal assignment.
For each set of nodes, including the initial, the

item, the bin and the final nodes, we define input,

output and activation functions, just like in neural

networks. These functions are designed to (1) capture

the constraints of the BPP and (2) assign an item to a

bin in one iteration using a certain priority rule

heuristic, such as FFD or BFD. After n iterations,

the network produces a solution, i.e. the number of

bins used. We call a set of n iterations an epoch, much

like in neural-network training. At the end of an epoch,

the weights are modified using a search strategy and a

new epoch starts. Learning takes place in each epoch.

…

…

I

Bin layer

Item layer

B1

T1 T2 T3

B2

F

Bm

OFFI

OFTF OFBF

OFTB
OFBT

OFBB

OFIT 

OFBB

wnw2w1

Final node 

Initial node 

OFF

Tn

Figure 1. Neural network representation of the BPP.
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The search strategy involves reinforcing the weights if
an improved solution is found, and backtracking to the
last best set of weights if no improvement occurs over a
pre-specified number of epochs. On an average, in less
than 145 epochs, the AugNN approach found very
good solutions for the 1210 test problems.

The activation functions are used to capture the
state of a PE. For example, for the item nodes, the state
would indicate whether that item has been assigned or
not. For the bin node, it would indicate whether the
bin is open, packed or not yet opened. We now
describe the mathematical formulation and algorithmic
details of AugNN for the BPP.

3.3. Notation

n number of items
m UB (number of bins)
T set of items¼ {1, 2, . . . , n}
B set of bins¼ {1, 2, . . . ,m}
C capacity of bins
k epoch number
t current assignment iteration [0, n]
I initial node
F final node
Ti ith item node in the item layer, i2T
Bj jth bin node in the bin layer, j2B
Si size of item i, i2 T

SUI set of unassigned items
LB lower bound of the number of bins
UB upper bound of the number of bins
RF reinforcement factor
BF backtracking factor
� search coefficient

Following are all functions of assignment iteration t:

IFI(t) input function of the initial node
IFTi(t) input function of item nodes Ti, i2T
IFBij(t) input function of bin nodes Bj from item

nodes Ti, i2T, j2B
IFFT(t) input function of the final node from the

item nodes
IFFB(t) input function of the final node from the

bin nodes
OFI(t) output function of initial node

OFTBi(t) output function of item nodes Ti to bin
nodes, i2T

OFTFi(t) output function of item nodes Ti to final
node, i2T

OFBFj(t) output function of bin nodes Bj to final
node, j2B

OFBTji(t) output function of bin nodes Bj to item
node Ti, i2T, j2B

OFBBj(t) output function of bin nodes Bj to Bjþ 1,
j2B, j 6¼m

OFFI(t) output function of final node
�I(t) activation function of the initial node
�Ti(t) activation function of item nodes Ti,

i2T
�Bj(t) activation function of bin nodes Bj, j2B
�F(t) activation function of the final node

assignij(t) item i assigned to bin j, i2T, j2B
RCj(t) residual capacity for jth bin, j2B

Following are the functions of k:

OFF(k) output function of final node
!i(k) weight on links from item nodes Ti to bin

nodes, i2T
"(k) error or difference between solution and

lower bound in epoch k

3.4. Preliminary steps

(1) Calculate the lower bound, i.e. the minimum
possible number of bins needed.

Lower bound ¼
X

i2T
SiÞ=CÞ

� ml
(2) Calculate the upper bound, i.e. the maximum

possible number of bins needed.

Upper bound ¼
�
n=ðC=max

i
ðSiÞÞ

�
, i 2 T

We want to use this many bins in the hidden
layer. m¼UB(number of bins).

(3) Weights !i(0) are initialised at 1.00.

3.5. AugNN functions

We present here the input, activation and output
functions of each layer of nodes, starting with the
initial node, followed by item nodes, bin nodes and
then the final node.

3.5.1. Initial node

t¼ 0 to begin with.

Input function
IFI(0)¼ 1,
IFI(t)¼OFFI(t), for t4 0.

The initial node gets an initial signal of 1 at the
beginning to set off the first iteration of the first epoch.
Thereafter, it receives an input from the final node.

Activation state
The state of the initial node is defined by t and k,

where t is the assignment number and k is the epoch
number.

�I(0): {t¼ 1, k¼ 1.

1416 N. Kasap and A. Agarwal
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For t4 0,

�IðtÞ ¼
t ¼ tþ 1, k ¼ k if IFIðtÞ ¼ 1
t ¼ 1, k ¼ kþ 1 if IFIðtÞ ¼ 2
t ¼ 0, k ¼ 0 if IFIðtÞ ¼ 3

8<
:

At the beginning, when t¼ 0, both t and k are

initialised at 1. IFI of 1 indicates a new assignment

iteration for the same epoch. So, t is incremented by

one, while k remains the same. At the end of an epoch,

signified by IFI of 2, k is incremented by 1 while t is

initialised to 1. At the end of the problem, i.e. when IFI

is 3, both t and k are 0.

Output function

OFIðtÞ ¼
1, if t4 0

0, otherwise

�

Whenever t4 0, the problem needs to be solved, so

the initial node sends an output signal of 1 to the item

nodes, signalling that if they are not yet assigned, it is

time to get assigned.

3.5.2. Item layer

Input function

IFTiðtÞ ¼ OFIðtÞ, i 2 T:

Activation function

8i 2 T, j 2 B,

�Tið0Þ ¼ 1

�TiðtÞ ¼

0,
if �Tiðt� 1Þ ¼ 0_ ð�Tiðt� 1Þ ¼ 1

^OFBTjiðtÞ ¼ 1Þ, t40,

� �

1,
if �Tiðt� 1Þ ¼ 1_ ð�Tiðt� 1Þ ¼ 0

^IFIiðtÞ ¼ 2Þ:

� �
8>>><
>>>:

State 1 above implies that item node Ti has not

been assigned yet. State 0 implies that it has been

assigned. Initially (i.e. at t¼ 0) the state of all item

nodes is initialised to 1. When the item is assigned

(signified by OFBTji(t)¼ 1), its state changes to 0 and

stays that way for the rest of the current epoch. The

state changes back to 1 when a new epoch starts

(i.e. when IFI is 2).

Output function

8i 2 T,

OFTBiðtÞ ¼ �TiðtÞ � Si � !iðkÞ,

OFTFiðtÞ ¼
1, if �TiðtÞ ¼ 0

0, otherwise

�

The OFTB signal sends a weighted size to the bin
layer. OFTB is 0 if the item is already assigned (due to
�Ti(t)¼ 0), and positive if not yet assigned.

OFTF sends a signal to the final node indicating
that the item has been assigned (indicated by
�Ti(t)¼ 0).

3.5.3. Bin layer

For the bin layer, we explain the activation function
first, since it is used in the input function.

Activation function

RCj(1)¼C,
�B1(1)¼ 1 state of the first bin for the first assignment
iteration is 1 (open).
j4 1^ j2B,
�Bj(1)¼ 0,

�Bj ðtÞ ¼

0,
if �Bj ðt�1Þ ¼ 0_ IFIðtÞ ¼ 2: bin not

open yet,

� �

1,
if �Bj ðt�1Þ ¼ 1_ð�Bj ðtÞ ¼ 0

^OFBBj�1ðtÞ ¼ 1Þ: bin open,

� �

2,
if �Bj ðt�1Þ ¼ 1^ðRCj ðtÞ5min½Sl �,

l2SUI: bin packed=closed,

� �

8>>>>>>>><
>>>>>>>>:

RCj ðtÞ ¼RCj ðtÞ�Si where i is the index for

max OFTBiðtÞ:

At the beginning, the first bin is open, rest are
unopened. A new bin opens (i.e. assumes state 1) when
it receives a signal (OFBBj�1(t)) from the previous bin.
The previous bin sends this signal when it cannot fit the
item with maximum OFTBi(t). When an open bin’s
residual capacity is less than the minimum size
unassigned item, then the bin closes (state 2).

Input function

8i2T, j2B,

IFBj ðtÞ ¼
max

i
OFTBj ðtÞ
� �

, if �Bj ðtÞ ¼ 1,

0, if �Bj ðtÞ ¼ 0_ �Bj ðtÞ ¼ 2:

(

If the bin is open (state 1) then it accepts the
maximum output of the item nodes as its input. If the
bin is not yet open (state 0) or packed and closed
(state 2), it does not accept any input.

Assignment of item to bin

assignijðtÞ ¼
0, if Si 4RCj ðtÞ,

1, if Si � RCj ðtÞ,

�
where i is the index for max OFTBiðtÞ
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Since we are applying FFD and BFD, once an item
is assigned to a bin, the rest of the bins do not attempt
to pack the same item.

Output function

8i 2 T, j 2 B

OFBFj ðtÞ ¼
1, if �Bj ðtÞ ¼ 2,

0, otherwise:

�

When a full bin closes (state 2), it sends a signal to
the final node. The final node keeps a counter of the
number of bins in state 2.

OFBBj ðtÞ ¼
1,

if �Bj ðt�1Þ ¼ 1^RCj ðtÞ5SiðtÞ,

i is the index for maxOFTBi ðtÞ:

� �
0, otherwise:

8<
:

When a bin cannot accept the biggest item due to
small residual capacity, it sends a signal to the next bin
to open.

OFBTjiðtÞ ¼
1, if assignijðtÞ ¼ 1,

0, otherwise:

�

When a bin accepts an item, it sends a signal of 1 to
the item node.

3.5.4. Final node

Input function
The final node receives two sets of inputs. One from

the bin layer (IFFB) and one directly from the item
layer (IFFT).

IFFBðtÞ ¼
Xm
j¼1

OFBFj ðtÞ,

IFFTðtÞ ¼
Xn
i¼1

OFTFiðtÞ:

IFFB is essentially the sum of all filled bins.
IFFT is the sum of all assigned items.

Activation function

�FðtÞ ¼

0, if IFFTðtÞ5 n,

1, if IFFTðtÞ ¼ n,

2, if IFFTðtÞ ¼ n ^ IFFBðtÞ ¼ LB,

8><
>:

State of 0 implies that not all n items are assigned.
State of 1 implies that all items are assigned, which

is an indication of the end of the current epoch. State
of 2 implies that a lower bound solution has been
found and therefore the processing can stop.

Output function

OFFIðtÞ ¼

1, if �FðtÞ ¼ 0,

2, if �FðtÞ ¼ 1 ^ k5 kmax,

3, if �FðtÞ ¼ 1 ^ k ¼ kmaxð Þ _ �FðtÞ ¼ 2,

8><
>:

OFFðkÞ ¼ IFFBðtÞ, if OFFIðtÞ ¼ 2 or 3:

Output OFFI of 1 implies that not all items have
been assigned and the network should run a new
assignment iteration. Output OFFI of 2 implies that all
items have been assigned but the lower bound solution
has not reached and the number of epochs has not
reached the max, so the network should run another
epoch. Output OFFI of 3 acts as a stopping rule. If
either a lower bound solution is found or the number
of epochs has reached its preset max limit, the network
stops.

The output OFF represents the solution, i.e. the
number of bins used to fill all the items.

3.5.5. Order of evaluation of functions

It is important to understand the order in which these
functions are evaluated. The ordering is as shown in
Figure 2. In general, in neural networks, input function
is calculated first, followed by activation function
followed by the output function. Further, in feedfor-
ward neural networks, input layer functions are
followed by hidden layer functions, followed by
output layer functions. In AugNN, we deviate slightly
because of (1) the assignment function and (2) need to
open new bins if existing bins cannot fit an item. This
requires evaluating certain functions within the same
layer twice.

One of the advantages of this kind of formulation is
that coding becomes easier. Also, a different heuristic,
such as ‘WFD’ can be applied by slightly modifying
one of the functions above.

3.6. Search strategy

A search strategy is required to modify the weights.
Weights are modified once for each epoch. They are
not modified from one assignment iteration to the
next. The idea behind weight modification is that if the
error in an epoch is too high, then the order in which
items should be placed should be changed more than if
the error is less. We employ the following search
strategy.

!iðkþ 1Þ ¼ !IðkÞ þ � � Si � "ðkÞ 8i 2 T,

where ðkÞ ¼ OFFðkÞ � LB:

In addition, we employ reinforcement and back-
tracking mechanisms to improve the solution quality.
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3.6.1. Reinforcement

Whenever the solution improves in the current epoch

compared to the previous epoch, i.e. whenever

OFF(k)5OFF(k� 1), we reinforce the weights by

magnifying the increases made during the previous

epoch. We employ a reinforcement factor RF as

follows:

!IðkÞ ¼ !IðkÞ þ RF � ð!IðkÞ � !Iðk� 1ÞÞ, 8i 2 T:

Such reinforcement acts as a reward for finding a

better solution and helps preserve the relative weights

of the items for a few epochs. RF can be any real

number between 1 and infinity, although we found

through some experimentation, that RF value of 3

gave good results.

3.6.2. Backtracking

If the solution does not improve for a certain number

of epochs say 100 or 150, then it is advisable to

backtrack to the previous best solution and forget the

last few epochs and start over. This backtracking

mechanism prevents the network from following a

path of no improvement for any longer than necessary.

We use a parameter called BF to implement such
backtracking.

3.7. End of iteration routines

(1) If OFFI is 1, do not modify the weights and
start with the next assignment iteration.

(2) If OFFI is 2, it signifies the end of an epoch. Do
the following steps:

. Check if the current solution is the best
so far. If so, store it as best solution.
Also, store the current weights as best
weights.

. Calculate the error, i.e. the difference
between OFF(k) and the lower bound.

. Sense if reinforcement needed. If
needed, apply reinforcement using the
reinforcement strategy.

. Sense if backtracking needed. If needed,
apply backtracking.

. Modify weights, using the search
strategy.

(3) If OFFI is 3, stop the network, and display the
best result so far.

Solution

OFF (k)

IFFB (t) OFBF (t)

Kickoff
IFI (0)

OFI (t)

IFT (t)

θT (t)

IFFT (t) 

θF (t)

OFFI (t)

IFI (t)

OFTF (t)

Modify weights if 
OFFI (t) = 2 

θI (t)

IFB (t)

OFBB (t)

OFBT (t)

Assignij (t)

If assignment 
does not occur If assignment 

occurs

θB (t)OFTB (t)

θI (0)
Functions of the 
initial node

Functions of the 
final node

Functions of 
the item layer

Functions of 
the bin layer

Figure 2. Order of evaluation of AugNN functions.
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3.8. Computation complexity

The computational complexity of the FFD and BFD is
O(n log n), primarily because sorting is required. Once
the sorted list of unassigned items is available, the
assignment is linear in n, or O(n). The complexity of
AugNN is the same for each epoch, i.e. O(n log n).
Of course, time taken is more because of the number of
epochs needed.

4. Decomposition strategy and problem structure-

based heuristic

For the set of hard instances, although AugNN
improved significantly over the single-pass FFD and
BFD, thus reducing the gap significantly from the
upper bound, the gap was still too high. To reduce the
gap further, we propose a decomposition strategy –
breaking the problem into subproblems and solving
them using heuristics that exploit the problem struc-
ture. Most heuristics are item centric, i.e. you take an
item, in a certain order of size, and decide which bin it
goes in. Our proposed heuristics are bin centric, similar
to Gupta and Ho’s (1999) ‘minimum bin slack’
heuristic, in which we take a bin and pack it with
appropriate items with minimum residual capacity in
each bin. Ours is a special case of the ‘minimum bin
slack’ heuristic designed for a fixed number of items
and involves a factor called tolerance for residual
capacity.

We observed that for each of the 10 hard problems,
the maximum number of items that could fit in a bin
was four, because even the five smallest items would
exceed the bin capacity. So, the trick was to first fill as
many bins as possible with four items each, with
minimum residual capacity, within a given tolerance.
This became our first subproblem – i.e. fitting bins
with four items within a tolerance. The next subprob-
lem involved fitting as many bins as possible with three
items within tolerance. All remaining items were
treated as the third subproblem, and solved using
AugNN. In designing our ‘pack-four item bins’ and
‘pack-three item bins’ heuristics, we exploited the fact
that the item sizes were drawn from a uniform
distribution. With the help of Figure 3(a) and (b), we
will explain how.

In Figure 3(a) and (b), we plot the items on the
x-axis in the increasing order by size and we plot sizes
on the y-axis. Since the sizes are drawn from a uniform
distribution, we get a near-straight line plot. For the
case of four-item packing let us look at Figure 3(a).
Suppose we find four adjacent items ‘c’, ‘d’, ‘e’ and ‘f ’,
such that the sum of their sizes is closest to but within
the bin capacity. This group of four items can be

placed in a bin. Due to the linearity of the plot, if we

find a pair of adjacent items on either side of and
equidistant from items ‘c’, ‘d’, ‘e’ and ‘f ’, then the sum

of the sizes of these four items should be close to the
bin capacity. For example, items ‘a’ and ‘b’ on the left

and items ‘g’ and ‘h’ on the right, equidistant from ‘c’,
‘d’, ‘e’ and ‘f ’, should fit in a bin tightly. Extending this
idea further, the sum of the sizes of items ‘j’ and ‘k’ and

‘p’ and ‘q’ will also be close to the bin capacity,
assuming that ‘j’ and ‘k’ are about as far from ‘a’ and

‘b’ as ‘p’ and ‘q’ are from ‘g’ and ‘h’. Using this idea,
we can find groups of four items that can be packed in

a bin with little residual capacity, within a certain
tolerance. Notice that the complexity of this heuristic is

linear in n.
For the three-item bin packing heuristic, we make a

similar observation. In Figure 3(b), for example, sum
of the sizes of items ‘a’, ‘c’ and ‘d’ will be about the

same as that of items ‘b’, ‘c’ and ‘e’, assuming items ‘a’
and ‘b’ are as far from item ‘c’ as items ‘d’ and ‘e’. Of

course, we are assuming that the size ranges, with
respect to bin capacity, are such that three items can fit

tightly.
Note that if the sizes of items were drawn from a

distribution other than uniform, such as, normal or
exponential, we would not get a near-straight line plot

in Figure 3(a) and (b), and we could not find groups of
four (or three) items to pack in this manner. For the

non-uniform distribution case, the proposed heuristics
would not work. Based on the above observations, we

outline the ‘pack four-item’ heuristic and the ‘pack
three-item’ heuristic below, for solving the first and the

second subproblems.

z

x

Items 

x
z

p,qg,ha,bj,k c,d,e,f

Si
ze

(a)

x
x

z
z

Si
ze

Items a,b c d,e

(b)

Figure 3. Plot of items and their sizes for: (a) four-item bin
packing and (b) three-item bin packing.
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4.1. Subproblem 1: Pack four-item bins

Step 1: Sort the items from smallest to largest.

Step 2: Open a new bin.

Step 3: Place the two smallest items in the open bin.

Step 4: Calculate the residual capacity of this bin and

divide by two.

Step 5: Find the item with size closest to but less than

the value obtained in Step 4, within a pre-specified

tolerance (in this case 500, but could be different for a

different problem).

If item found then place it in the bin and go to Step 6,

else go to Step 10.

Step 6: Find the new residual capacity.

Step 7: Find the item with size closest to but less than

the value obtained in Step 6 within a pre-specified

tolerance (in this case 500, but could be different for a

different problem). Note that this fourth item should

be found either adjacent to or very close to the

third item.

If found then place it in the bin and go to Step 8,

else go to Step 10.

Step 8: Close the bin and count it as a packed bin.

Step 9: Remove these four items from the list of

unassigned items and go to Step 2.

Step 10: Do not commit any items to this bin,

close the bin and do not count it as a packed bin. Give

the total number of packed bins so far. Go to

Subproblem 2.

4.2. Subproblem 2: Pack three-item bins

Step 1: Sort the list of unassigned items from largest

to smallest.

Step 2: Open a new bin.

Step 3: If there are at least three items in the set of

unassigned items then, place the largest and the

smallest items in this bin.

Step 4: Find the residual capacity of this bin.

Step 5: Find the item closest to but less than the value

obtained in Step 4, within a pre-specified tolerance

(in this case 1000, but could differ).

If such an item is found then place it in the bin and go

to Step 6. If not, go to Step 8.

Step 6: Close this bin and count it as a packed bin.

Step 7: Remove these three items from the list of
unassigned items and go to Step 2.

Step 8: Do not commit any items to this bin, close the
bin and do not count it as a packed bin. Give the total
number of packed bins so far. Go to Subproblem 3.

4.3. Subproblem 3: AugNN

Step 1: Enlist all the remaining unassigned items.

Step 2: Apply AugNN for this set of items.

Finally, aggregate the solutions for the three
subproblems.

Note that the above-mentioned decomposition
strategy worked well on all the 10 hard problems.
For 8 out of 10 problems, the upper bound solution
was found in less than 0.5 s. For the remaining two
problems, a solution was found within one bin of the
upper bound. Decomposition strategy and problem
structure-based heuristic worked well compared with
some heuristics available in the literature. In Fleszar
and Hindi (2002), their heuristic found 2 out of 10
optimal solutions for the hard problem set. Note that if
more than four items can fit in a bin, then we should
not apply our ‘pack four-item bin’ heuristics. We found
that for such problems, AugNN worked well without
the help of problem structure-based heuristics.

5. Computational experiments

5.1. Datasets

For our empirical work, we used three sets of bench-
mark problems available at the OR-Library at the
Technische Universitat Darmstadt.1 The three sets
correspond to problems of three levels of difficulty –
easy, medium and hard. Upper bounds for these
problems using tabu search and branch-and-bound
algorithms are also known.

There are other datasets available in the literature.2

We did not use them since the dataset used in
Falkenauer (1996) is very similar to dataset we are
using in our empirical work and the dataset used in
Waescher and Gau (1996) is very easy to solve since
optimum solution can be found in the first iteration
and a simple heuristic such as FFD.

The 720 instances of the easy dataset are divided
into 36 subsets of 20 problems each with some
common characteristics. The subsets of 20 problems
are labelled ‘NxCyWz_v’ where

x¼ 1 (for n¼ 50), x¼ 2 (n¼ 100),
y¼ 1 (for C¼ 100), y¼ 2 (C¼ 120), y¼ 3 (C¼ 150),
z¼ 1 (for Si from [1, 100]), z¼ 2 ([20, 100]), z¼ 4
([30, 100]),
v¼A through T for the 20 instances of each class.
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The item sizes are chosen as integer values from the
given intervals using uniformly distributed random
numbers.

The instances in the medium difficulty set are
divided into 48 subsets of 10 instances each with
common characteristics. These subsets of 10 problems
are labelled as ‘NxWyBzRv’ where

x¼ 1 (for n¼ 50),
y¼ 1 (for avgSize¼C/3), y¼ 2 (C/5), y¼ 3 (C/7), y¼ 4
(C/9) where C¼ 1000 for this set,
z¼ 1 (for delta¼ 20%), z¼ 2 (50%), z¼ 3 (90%),
v¼ 0 through 9 for the 10 instances of each class.

The parameter avgSize represents the desired aver-
age size of the items, while delta specifies the maximal
deviation of the single value from avgSize. For
example, the sizes are randomly chosen from the
interval [160,240] in case of avgSize¼C/5 and
delta¼ 20%.

The third dataset contains 10 instances. The
number of items and bin capacity for each instance is
200 and 100,000, respectively. The item sizes are
varying between 20,000 and 35,000. Therefore, the
number of items for each bin is between three and five.

5.2. Platform and parameters

We coded our heuristics in Visual Basic�6.0, running
on a Pentium-III PC with 512MB RAM. A user
interface was created that allowed selection of data
files, specification of parameters, such as maximum
number of epochs, search rate and reinforcement
factor. The output files included details, such as
number of bins used, CPU time, and number of
epochs needed to find the best solution. We ran
AugNN for a maximum of 2500 epochs to keep the
CPU time within reasonable limit. Higher number of
epochs could give improved results. We set our search
coefficient at 0.0005 and the reinforcement factor at 3.
We backtracked if the solution did not improve in 500
epochs. These search parameter values were obtained
after considerable experimental effort.

5.3. Results

Table 1 (Panels A and B) summarises the results of
AugNN in conjunction with FFD and BFD, respec-
tively for dataset 1 (easy instances). Table 2 (Panels A
and B) do the same for dataset 2 (medium instances).
These tables report the minimum, maximum and mean
number of iterations to solve the problem, run time (in
seconds), solution to upper-bound ratio (Z/UB ratio),
and the number of problems solved to optimality for
each instance group. Each row in these tables

represents average values for all instances in a subset
of problems with similar characteristics. There are
20 and 10 problems per subset in datasets 1 and 2,
respectively. Since there are only 10 instances in
dataset 3, we have reported their results individually
in Table 5.

Table 1 (Panels C and D) summarises the improve-
ment by AugNN over single-pass solutions using FFD
and BFD, respectively, for dataset 1. Table 2 (Panels C
and D) does the same for dataset 2. As given in Table 1
(Panels C and D), AugNN reduces the number of bins
value by one in all improved solutions. In other words,
AugNN either got the same solution with single-pass
heuristic or improve the solution by reducing number
of bins by one. Similarly, you can see the number of
bins reduced (solution improved) in each problem
subsets in Table 2 (Panels C and D) for dataset 2. For
example, for problem subset N4W1B1 AugNN
improve solution over single-pass solutions using
FFD by reducing number of bins value by at least 10
at most 12, using BFD by reducing number of bins
value by at least 9 at most 12, for problem subset
N3W1B1 AugNN improve solution over single-pass
solutions using FFD by reducing number of bins value
by at least 5 at most 6.

For dataset 1, AugNN found the optimal solution
for 597 of the 720 problems using FFD, and for 587
problems using BFD (Table 1, Panels A and B). The
average Z/UB ratio for all problems was 0.2595% for
FFD and 0.33159% for BFD. As given in Tables 3
and 4, the single-pass FFD and BFD heuristics found
the optimal solution for 547 out of 720 problems,
respectively. For the remaining problems, AugNN
improved the solution for 78 problems with FFD, 50 of
which were solved to optimality and for 66 problems
with BFD, of which 40 were solved to optimality. The
average time taken per problem was 38.8 and 43.9 s for
FFD and BFD, respectively.

For dataset 2, AugNN found the optimal solution
for 312 out of 480 problems using FFD, and for 297
problems using BFD (Table 2, Panels A and B). The
average Z/UB ratio for all problems was 1.2576% for
FFD and 1.5566% for BFD. As given in Tables 3 and
4, the single-pass FFD and BFD heuristics found the
optimal solution for 236 of the 480 problems. For the
remaining 244 problems, AugNN improved the solu-
tion for 175 problems with FFD, 76 of which were
solved to optimality and for 158 problems with BFD,
of which 61 were solved to optimality. The average
time taken per problem was 25.3 and 23.6 s for FFD
and BFD, respectively.

The average number of epochs needed to find the
best solution for dataset 1 was 58 with FFD and 65 for
BFD. For dataset 2, the average number of epochs was
273 for FFD and 179 for BFD.
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Table 1. Results and improvement of AugNN with FFD and BFD for dataset 1.

Problem
subsets

Iteration
number

[min, max],
mean

Run
time (s)

Z/UB
ratio

Problems solved
to optimality
(out of 20)

Panel A: With FFD for dataset 1
N1C1W1 [1, 1746], 88.25 1.7117 1.002 19
N1C1W2 [1, 1], 1 2.1188 1 20
N1C1W4 [1, 72], 4.55 2.3590 1 20
N1C2W1 [1, 1], 1 1.7742 1 20
N1C2W2 [1, 2436], 122.75 1.8574 1 20
N1C2W4 [1, 1], 1 2.2648 1 20
N1C3W1 [1, 546], 39.55 1.5727 1.002941 19
N1C3W2 [1, 2290], 332.85 1.7363 1.002778 19
N1C3W4 [1, 1946], 350.25 1.7260 1.007262 17
N2C1W1 [1, 1], 1 5.2445 1 20
N2C1W2 [1, 1], 1 7.5484 1 20
N2C1W4 [1, 1], 1 8.0813 1 20
N2C2W1 [1, 1], 1 5.2773 1.001163 19
N2C2W2 [1, 437], 22.8 6.1191 1 20
N2C2W4 [1, 77], 4.8 7.5590 1 20
N2C3W1 [1, 1], 1 4.8363 1 20
N2C3W2 [1, 1322], 205 5.3854 1.008429 13
N2C3W4 [1, 2386], 386.7 5.2472 1.008016 13
N3C1W1 [1, 215], 11.7 20.4676 1.00051 19
N3C1W2 [1, 1], 1 26.3797 1.001211 17
N3C1W4 [1, 4], 1.15 27.7234 1 20
N3C2W1 [1, 279], 22 17.7504 1.001869 17
N3C2W2 [1, 489], 25.4 24.4938 1.000476 19
N3C2W4 [1, 146], 8.25 26.4816 1.000442 19
N3C3W1 [1, 1], 1 17.3965 1.001471 18
N3C3W2 [1, 1197], 175.25 18.6780 1.01054 3
N3C3W4 [1, 752], 175.4 23.3908 1.014399 2
N4C1W1 [1, 158], 8.85 123.3547 1.000619 17
N4C1W2 [1, 18], 1.85 145.2357 1.000486 17
N4C1W4 [1, 1], 1 146.8391 1 20
N4C2W1 [1, 474], 44.75 84.9664 1.001671 13
N4C2W2 [1, 44], 3.15 136.0320 1.000189 19
N4C2W4 [1, 1], 1 136.1516 1 20
N4C3W1 [1, 1], 1 82.5371 1.000599 18
N4C3W2 [1, 80], 11.3 132.3674 1.011473 0
N4C3W4 [1, 60], 17.65 133.5311 1.014886 0
Average 38.78323 1.002595 16.58

Panel B: With BFD for dataset 1
N1C1W1 [1, 1], 1 0.8461 1.0045 18
N1C1W2 [1, 1], 1 1.3645 1 20
N1C1W4 [1, 239], 12.9 3.0969 1 20
N1C2W1 [1, 1], 1 0.8426 1 20
N1C2W2 [1, 1], 1 1.6508 1.002174 19
N1C2W4 [1, 1], 1 3.3336 1 20
N1C3W1 [1, 1882], 170.4 0.1883 1.002941 19
N1C3W2 [1, 2458], 224.7 0.5016 1.00779 17
N1C3W4 [1, 2350], 279.15 1.1512 1.011916 15
N2C1W1 [1, 1], 1 6.6035 1 20
N2C1W2 [1, 1], 1 9.3605 1 20
N2C1W4 [1, 1], 1 12.1773 1 20
N2C2W1 [1, 1], 1 3.8352 1.001163 19
N2C2W2 [1, 1928], 97.35 7.8691 1 20
N2C2W4 [1, 218], 11.85 9.4766 1 20
N2C3W1 [1, 1], 1 0.1621 1 20
N2C3W2 [1, 2424], 446.15 3.7227 1.009648 12

(continued )
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Table 1. Continued.

Problem
subsets

Iteration
number

[min, max],
mean

Run
time (s)

Z/UB
ratio

Problems solved
to optimality
(out of 20)

N2C3W4 [1, 2202], 474.5 5.957422 1.011374 10
N3C1W1 [1, 170], 9.45 23.9207 1.00051 19
N3C1W2 [1, 1], 1 35.7215 1.001211 17
N3C1W4 [1, 9], 1.4 37.5270 1 20
N3C2W1 [1, 721], 45.9 13.1901 1.001869 17
N3C2W2 [1, 317], 16.8 33.5038 1.000476 19
N3C2W4 [1, 148], 8.35 38.6088 1.000442 19
N3C3W1 [1, 1], 1 1.3190 1.001471 18
N3C3W2 [1, 1775], 302.4 20.9008 1.010524 4
N3C3W4 [1, 605], 127.65 29.7615 1.016118 2
N4C1W1 [1, 135], 7.7 157.1093 1.000619 17
N4C1W2 [1, 1], 1 188.0017 1.000648 16
N4C1W4 [1, 1], 1 196.9160 1 20
N4C2W1 [1, 433], 48.95 49.7987 1.001671 13
N4C2W2 [1, 41], 3 169.7114 1.000189 19
N4C2W4 [1, 1], 1 184.1120 1 20
N4C3W1 [1, 1], 1 9.1160 1.000599 18
N4C3W2 [1, 140], 27.75 151.4313 1.010967 0
N4C3W4 [1, 124], 22.25 166.4911 1.014888 0
Average 43.8689 1.003159 16.31

Problem subsets Minimum Maximum Average Problem subsets Minimum Maximum Average

Panel C: Improvement by AugNN over single-pass FFD for dataset 1
N1C1W1 0 1 0.05 N3C1W1 0 1 0.05
N1C1W2 0 0 0 N3C1W2 0 0 0
N1C1W4 0 1 0.05 N3C1W4 0 1 0.05
N1C2W1 0 0 0 N3C2W1 0 1 0.1
N1C2W2 0 1 0.05 N3C2W2 0 1 0.05
N1C2W4 0 0 0 N3C2W4 0 1 0.05
N1C3W1 0 1 0.1 N3C3W1 0 0 0
N1C3W2 0 1 0.25 N3C3W2 0 1 0.35
N1C3W4 0 1 0.25 N3C3W4 0 1 0.5
N2C1W1 0 0 0 N4C1W1 0 1 0.05
N2C1W2 0 0 0 N4C1W2 0 1 0.05
N2C1W4 0 0 0 N4C1W4 0 0 0
N2C2W1 0 0 0 N4C2W1 0 1 0.15
N2C2W2 0 1 0.05 N4C2W2 0 1 0.05
N2C2W4 0 1 0.05 N4C2W4 0 0 0
N2C3W1 0 0 0 N4C3W1 0 0 0
N2C3W2 0 1 0.3 N4C3W2 0 1 0.25
N2C3W4 0 1 0.55 N4C3W4 0 1 0.5

Panel D: Improvement by AugNN over single-pass BFD for dataset 1
N1C1W1 0 0 0 N3C1W1 0 1 0.05
N1C1W2 0 0 0 N3C1W2 0 0 0
N1C1W4 0 1 0.05 N3C1W4 0 1 0.05
N1C2W1 0 0 0 N3C2W1 0 1 0.1
N1C2W2 0 0 0 N3C2W2 0 1 0.05
N1C2W4 0 0 0 N3C2W4 0 1 0.05
N1C3W1 0 1 0.1 N3C3W1 0 0 0
N1C3W2 0 1 0.15 N3C3W2 0 1 0.35
N1C3W4 0 1 0.15 N3C3W4 0 1 0.35
N2C1W1 0 0 0 N4C1W1 0 1 0.05
N2C1W2 0 0 0 N4C1W2 0 0 0
N2C1W4 0 0 0 N4C1W4 0 0 0

(continued )
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Table 1. Continued.

Problem subsets Minimum Maximum Average Problem subsets Minimum Maximum Average

N2C2W1 0 0 0 N4C2W1 0 1 0.15
N2C2W2 0 1 0.05 N4C2W2 0 1 0.05
N2C2W4 0 1 0.05 N4C2W4 0 0 0
N2C3W1 0 0 0 N4C3W1 0 0 0
N2C3W2 0 1 0.25 N4C3W2 0 1 0.35
N2C3W4 0 1 0.4 N4C3W4 0 1 0.5

Notes: In Panel A: 597 out of 720 individual instances were solved to optimality. In Panel B:587 out of 720 individual instances
were solved to optimality.

Table 2. Results and improvement of AugNN with FFD and BFD for dataset 2.

Problem
subsets

Iteration number
[min, max], mean

Run
time (s)

Z/UB
ratio

Problems solved to
optimality (out of 10)

Panel A: With FFD for dataset 2
N1W1B1 [73, 1909], 465.3 1.0016 1.01732 7
N1W1B2 [1, 2285], 610.6 1.0654 1.024265 6
N1W1B3 [1, 1], 1 0.6695 1.017688 7
N1W2B1 [1, 270], 72.2 0.9852 1.02 8
N1W2B2 [1, 955], 152.2 0.7195 1 10
N1W2B3 [1, 1], 1 0.7336 1 10
N1W3B1 [1, 5254], 526.3 1.2375 1.028571 8
N1W3B2 [1, 721], 72.1 0.7898 1 10
N1W3B3 [1, 1], 1 0.8336 1 10
N1W4B1 [1, 1], 1 0.8961 1 10
N1W4B2 [1, 1412], 241.4 0.8172 1 10
N1W4B3 [1, 1], 1 0.9375 1 10
N2W1B1 [87, 1858], 1086.9 5.2414 1.017647 4
N2W1B2 [1, 460], 118.8 3.8977 1.032205 1
N2W1B3 [1, 124], 13.3 3.7299 1.009315 7
N2W2B1 [1, 1192], 497.1 4.7645 1.024524 5
N2W2B2 [1, 85], 11.5 3.7016 1.01 8
N2W2B3 [1, 1], 1 3.1898 1.004762 9
N2W3B1 [1, 144], 15.3 3.8938 1.014286 8
N2W3B2 [1, 2027], 203.6 3.2281 1 10
N2W3B3 [1, 1], 1 3.2844 1 10
N2W4B1 [1, 1], 1 3.3609 1.027273 7
N2W4B2 [1, 140], 26.5 3.6828 1 10
N2W4B3 [1, 212], 22.1 2.4813 1 10
N3W1B1 [79, 1923], 1063 18.9223 1.032792 0
N3W1B2 [1, 2222], 420.7 19.0676 1.037774 0
N3W1B3 [1, 5] 1.4 12.3445 1.006039 6
N3W2B1 [329, 2370], 836.6 18.3568 1.027012 0
N3W2B2 [1, 476], 125.9 13.2742 1.012564 5
N3W2B3 [1, 9] 1.8 10.5547 1.005 8
N3W3B1 [1, 1178] 327.2 16.6313 1.020936 4
N3W3B2 [1, 114] 25.4 11.8172 1.003571 9
N3W3B3 [1, 1], 1 11.5531 1.003571 9
N3W4B1 [1, 215] 85.8 15.4055 1 10
N3W4B2 [1, 798] 180.5 13.8186 1 10
N3W4B3 [1, 1], 1 9.2484 1 10
N4W1B1 [52, 2490], 2126.1 88.6285 1.041289 0
N4W1B2 [1, 1953], 704.8 110.2297 1.041544 0
N4W1B3 [1, 33], 4.2 67.2305 1.001761 7
N4W2B1 [154, 2495], 769.4 112.8489 1.044469 0
N4W2B2 [1, 1881], 446.9 97.5063 1.011833 0
N4W2B3 [1, 32], 4.1 53.7844 1.001 9

(continued )

International Journal of Systems Science 1425

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
So

ut
h 

Fl
or

id
a]

 a
t 1

5:
25

 1
6 

M
ay

 2
01

6 



Table 2. Continued.

Problem
subsets

Iteration number
[min, max], mean

Run
time (s)

Z/UB
ratio

Problems solved to
optimality (out of 10)

N4W3B1 [28, 953], 442.8 110.4699 1.029577 0
N4W3B2 [1, 189], 41.4 84.5820 1.00988 3
N4W3B3 [1, 10], 1.9 58.4973 1 10
N4W4B1 [1, 2290], 352.7 88.0484 1.019708 0
N4W4B2 [1, 49], 5.8 67.7868 1.005455 7
N4W4B3 [1, 1], 1 48.6267 1 10
Average 25.2995 1.012576 6.5

Panel B: With BFD for dataset 2
N1W1B1 [66, 2454], 570.8 1.2605 1.023529 6
N1W1B2 [1, 1667], 343.7 0.7525 1.041585 3
N1W1B3 [1, 1], 1 0.3393 1.017688 7
N1W2B1 [1, 1076], 245.6 0.5135 1.02 8
N1W2B2 [1, 1511], 298.2 0.3008 1 10
N1W2B3 [1, 1], 1 0.1350 1 10
N1W3B1 [1, 1], 1 0.5287 1.042857 7
N1W3B2 [1, 1], 1 0.1135 1.014286 9
N1W3B3 [1, 1], 1 0.1756 1 10
N1W4B1 [1, 1], 1 0.4408 1 10
N1W4B2 [1, 1], 1 0.1117 1.033333 8
N1W4B3 [1, 1], 1 0.2949 1 10

N2W1B1 [101, 1071], 582.3 9.3422 1.023529 2
N2W1B2 [1, 934], 198.7 5.2975 1.032205 1
N2W1B3 [1, 475], 48.4 2.0344 1.009315 7
N2W2B1 [1, 2403], 357.9 7.2531 1.043571 1
N2W2B2 [1, 104], 15.4 0.6615 1.01 8
N2W2B3 [1, 1], 1 0.5602 1.004762 9
N2W3B1 [1, 976], 98.5 1.2215 1.014286 8
N2W3B2 [1, 1], 1 0.1033 1.007143 9
N2W3B3 [1, 1], 1 0.3707 1 10
N2W4B1 [1, 1], 1 2.0504 1.027273 7
N2W4B2 [1, 616], 158.6 0.2764 1 10
N2W4B3 [1, 755], 76.4 0.1967 1 10

N3W1B1 [136, 1307], 407.8 34.8127 1.040233 0
N3W1B2 [1, 421], 99 29.7865 1.039289 0
N3W1B3 [1, 5], 1.4 7.7762 1.006039 6
N3W2B1 [327, 2160], 1183.7 27.1352 1.029451 0
N3W2B2 [1, 1483], 292.3 10.3301 1.012564 5
N3W2B3 [1, 51], 9.6 0.4990 1.0025 9
N3W3B1 [1, 2056], 725.2 15.8553 1.020936 4
N3W3B2 [1, 349], 60.8 2.2695 1.003571 9
N3W3B3 [1, 1], 1 1.0689 1.003571 9
N3W4B1 [1, 793], 285.9 0.9541 1 10
N3W4B2 [1, 1079], 275.1 1.9922 1.004545 9
N3W4B3 [1, 1], 1 0.0719 1 10

N4W1B1 [65, 1809], 545.2 161.8008 1.047869 0
N4W1B2 [1, 101], 28 182.8211 1.044549 0
N4W1B3 [1, 32], 4.1 30.3496 1.001761 7
N4W2B1 [144, 1480], 513.7 144.7898 1.044488 0
N4W2B2 [1, 186], 22.1 112.6480 1.014804 0
N4W2B3 [1, 32], 4.1 7.6566 1.001 9
N4W3B1 [89, 2346], 762.1 131.3199 1.029577 0
N4W3B2 [1, 716], 132.2 61.9070 1.00988 3
N4W3B3 [1, 39], 4.8 0.0828 1 10
N4W4B1 [1, 757], 235.7 112.6926 1.019708 0
N4W4B2 [1, 91], 10 21.3766 1.005455 7
N4W4B3 [1, 1], 1 0.0066 1 10
Average 23.63204 1.015566 6.19

(continued )
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Table 2. Continued.

Problem
subsets

Iteration number
[min, max], mean

Run
time (s)

Z/UB
ratio

Problems solved to
optimality (out of 10)

Problem subsets Minimum Maximum Average Problem subsets Minimum Maximum Average

Panel C: Improvement by AugNN over single-pass FFD for dataset 1
N1W1B1 1 2 1.5 N3W1B1 5 6 5.4
N1W1B2 0 1 0.6 N3W1B2 0 1 0.8
N1W1B3 0 0 0 N3W1B3 0 1 0.1
N1W2B1 0 1 0.4 N3W2B1 0 1 1.9
N1W2B2 0 1 0.4 N3W2B2 0 1 0.4
N1W2B3 0 0 0 N3W2B3 0 1 0.1
N1W3B1 0 1 0.1 N3W3B1 0 1 0.6
N1W3B2 0 1 0.1 N3W3B2 0 1 0.3
N1W3B3 0 0 0 N3W3B3 0 0 0
N1W4B1 0 0 0 N3W4B1 0 1 0.8
N1W4B2 0 1 0.2 N3W4B2 0 1 0.5
N1W4B3 0 0 0 N3W4B3 0 0 0

N2W1B1 2 3 2.8 N4W1B1 10 12 11.3
N2W1B2 0 1 0.4 N4W1B2 1 2 1.2
N2W1B3 0 1 0.1 N4W1B3 0 1 0.1
N2W2B1 0 1 0.8 N4W2B1 3 4 3.3
N2W2B2 0 1 0.2 N4W2B2 0 1 0.6
N2W2B3 0 0 0 N4W2B3 0 1 0.1
N2W3B1 0 1 0.1 N4W3B1 1 2 1.2
N2W3B2 0 1 0.1 N4W3B2 0 1 0.4
N2W3B3 0 0 0 N4W3B3 0 1 0.1
N2W4B1 0 0 0 N4W4B1 0 1 0.9
N2W4B2 0 1 0.3 N4W4B2 0 1 0.1
N2W4B3 0 1 0.1 N4W4B3 0 0 0

Panel D: Improvement by AugNN over single-pass BFD for dataset 1
N1W1B1 1 2 1.4 N3W1B1 4 5 4.9
N1W1B2 0 1 0.3 N3W1B2 0 1 0.7
N1W1B3 0 0 0 N3W1B3 0 1 0.1
N1W2B1 0 1 0.4 N3W2B1 1 2 1.8
N1W2B2 0 1 0.3 N3W2B2 0 1 0.4
N1W2B3 0 0 0 N3W2B3 0 1 0.2
N1W3B1 0 0 0 N3W3B1 0 1 0.6
N1W3B2 0 0 0 N3W3B2 0 1 0.3
N1W3B3 0 0 0 N3W3B3 0 0 0
N1W4B1 0 0 0 N3W4B1 0 1 0.8
N1W4B2 0 0 0 N3W4B2 0 1 0.4
N1W4B3 0 0 0 N3W4B3 0 0 0

N2W1B1 2 3 2.6 N4W1B1 9 12 10.2
N2W1B2 0 1 0.4 N4W1B2 0 1 0.7
N2W1B3 0 1 0.1 N4W1B3 0 1 0.1
N2W2B1 0 1 0.4 N4W2B1 3 4 3.3
N2W2B2 0 1 0.2 N4W2B2 0 1 0.3
N2W2B3 0 0 0 N4W2B3 0 1 0.1
N2W3B1 0 1 0.1 N4W3B1 1 2 1.2
N2W3B2 0 0 0 N4W3B2 0 1 0.4
N2W3B3 0 0 0 N4W3B3 0 1 0.1
N2W4B1 0 0 0 N4W4B1 0 1 0.9
N2W4B2 0 1 0.3 N4W4B2 0 1 0.1
N2W4B3 0 1 0.1 N4W4B3 0 0 0

Notes: In Panel A: 312 out of 480 individual instances were solved to optimality. In Panel B: 297 out of 480 individual instances
were solved to optimality.

International Journal of Systems Science 1427

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
So

ut
h 

Fl
or

id
a]

 a
t 1

5:
25

 1
6 

M
ay

 2
01

6 



For the set of hard instances, although AugNN
improved significantly over FFD heuristic, reducing
the gap from about 10% to 4% from the upper bound,
the gap, at 4%, was still too high. We applied the
decomposition strategy and heuristics discussed in
Section 4. The results are summarised in Table 5.
Eight out of 10 problems were solved to optimality,
while the other two were within one bin of the upper
bound. The average gap for all 10 problems was less
than 0.4% and the run time to find the solution
averaged 0.25 s.

Previous researchers have found better results for
datasets 1 and 2 but not for dataset 3. For example, for
dataset 1, DualTabu (Scholl et al. 1997) found the
optimal for 666 of 720 problems, B2F for 545

problems, FFD-B2F for 617 problems and BISON
(Scholl et al. 1997) heuristic for 697 problems. For
dataset 2, DualTabu found the optimal for 466
problems, B2F for 292 problems, FFD-B2F for 319
problems and BISON for 473 problems. For dataset 3,
DualTabu found the optimal for 3 out of 10 problems,
B2F for 0 problems, FFD-B2F for 0 problems and
BISON for 3 problems. AugNN being a new approach,
needs more research in search rules to improve the
solution. The initial results are encouraging because
working with very simple heuristics, AugNN was able
to find good improvements. If more complex heuristics
are used in conjunction with AugNN, the results could
be improved further.

6. Summary and conclusions

In this article, we proposed two broad approaches for
solving the classical BPP, in which n items are to be
packed in minimum number of fixed-capacity bins.
The first is a metaheuristic approach based on neural-
networks principles. The second is a decomposition
approach, using heuristics that exploit the problem
structure. Using these approaches, a large percentage
of benchmark problems were solved to optimality and
the rest to near optimality. The AugNN approach, first
proposed by Agarwal et al. (2003) for the task-
scheduling problem, is applied to the BPP for the
first time. The approach involves representing
the problem as a neural network, with items forming
the input layer and bins the hidden layer. Input, output
and activation functions are defined in such a way that
in one epoch of n assignment iterations, a feasible
solution is obtained, without increasing the computa-
tional complexity of a simple heuristic, such as FFD.

The AugNN approach worked very well on two of
the three benchmark datasets that we used – the easy
and medium difficulty datasets. For the hard problem
datasets, we propose a decomposition approach, in
which a subproblem is solved using a ‘pack-four-item
bin’ heuristic and another subproblem by a ‘pack-
three-item bin’ and the rest by AugNN. These
heuristics exploited certain problem-specific character-
istics, such as the fact that the sizes of the items were
drawn from a uniform distribution and the range of the
sizes was such that no more than four items could fit in
a bin and there were enough items such that three items
would fit in a bin tightly. Similar strategies can be
employed on other BPP.

Of the 1210 problems tested, optimal solutions were
found for 917 problems. The average gap between the
obtained and the optimal solution was under 0.66%.
Successful application of this new type of metaheuristic
opens up many opportunities for further research.

Table 5. Results for dataset 3.

Problem
name

Number of bins filled after

Run
time (s) Z/UBa

Four
pack

Three
pack AugNN

Hard0 32 43 56 0.2560 1
Hard1 31 44 57 0.2656 1
Hard2 31 45 57 0.1406 1.0178571
Hard3 35 45 55 0.2265 1
Hard4 29 39 57 0.1758 1
Hard5 32 43 56 0.2773 1
Hard6 29 42 57 0.3945 1
Hard7 26 38 55 0.1893 1
Hard8 31 44 57 0.2657 1
Hard9 23 37 57 0.3867 1.0178571
Average 0.2580 1.0035714

Note: aEight out of 10 individual instances were solved to
optimality.

Table 4. Improvement by AugNN over single-pass BFD.

Dataset
Single-pass

BFD
AugNN
(optimal)

AugNN
(improvement)

Problems
solved to
optimality

Dataset 1 547 40 26 587
Dataset 2 236 61 97 297

Table 3. Improvement by AugNN over single-pass FFD.

Dataset
Single-pass

FFD
AugNN
(optimal)

AugNN
(improvement)

Problems
solved to
optimality

Dataset 1 547 50 28 597
Dataset 2 236 76 99 312
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For example, the approach could be used for more
complex BPP, involving more constraints, such as
conflicts. The approach can be tested in conjunction
with other heuristics, other than FFD and BFD used in
this article. Also, alternative search strategies can be
developed which might find improved solutions.
Sensitivity analysis of the various search parameters
would also be a useful exercise.
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