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A variety of metaheuristic approaches have emerged in recent years for solving the resource-

constrained project scheduling problem (RCPSP), a well-known NP-hard problem in scheduling. In this

paper, we propose a Neurogenetic approach which is a hybrid of genetic algorithms (GA) and neural-

network (NN) approaches. In this hybrid approach the search process relies on GA iterations for global

search and on NN iterations for local search. The GA and NN search iterations are interleaved in a

manner that allows NN to pick the best solution thus far from the GA pool and perform an

intensification search in the solution’s local neighborhood. Similarly, good solutions obtained by NN

search are included in the GA population for further search using the GA iterations. Although both GA

and NN approaches, independently give good solutions, we found that the hybrid approach gives better

solutions than either approach independently for the same number of shared iterations. We

demonstrate the effectiveness of this approach empirically on the standard benchmark problems of

size J30, J60, J90 and J120 from PSPLIB.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The resource-constrained project scheduling problem (RCPSP)
is a classical problem in scheduling. The problem is widely
applicable in project management, construction engineering,
software development and production scheduling and is known
to be strongly NP-hard [1]. The objective is to schedule the
activities of a project so as to minimize the project makespan,
subject to precedence and resource constraints. The quantities of
available resources are assumed to be known and fixed for the
entire duration of the project. The resources are considered
renewable, i.e., they do not get consumed. Resource requirements
and processing times for each activity are also known and fixed a
priori. Preemption of activities is not allowed. This problem has
been well researched for over four decades. Since exact
approaches are not applicable to larger problems, due to the
NP-hard nature of the problem, research efforts in recent years
have focused on developing a variety of heuristic and metaheur-
istic approaches. Single-pass heuristics are generally based on
priority rules such as minimum latest finish time next or
maximum remaining work next, etc. Multi-pass heuristics or
ll rights reserved.
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metaheuristics are also very popular because they tend to
improve the solution quality over single-pass heuristics signifi-
cantly by using some extra computation time. A variety of
metaheuristic approaches such as genetic algorithms, tabu search,
simulated annealing, ant-colony optimization and neural net-
work-based approaches have been developed in the last 15 years.

In this paper we propose a hybrid approach called the
Neurogenetic approach for solving the RCPSP. The proposed
approach is a hybrid of genetic algorithms (GA) and neural
networks-based (NN) approaches. The GA approach has shown
remarkable success in solving the RCPSP and is one of the most
preferred approaches for this problem. Colak et al. [2] proposed a
NN-based approach which also gave very competitive results for
this problem. Although both GA and NN-based approaches give
some of the best known results in the literature, the two
approaches are very different from each other in terms of search
strategies. While the GA approach is very effective for global
search, the NN-based approach is basically a nondeterministic
local-search technique. We propose hybridizing these approaches
in order to benefit from the complementary advantages of the two
approaches—i.e. GAs providing the diversification in search while
NNs providing intensification.

We propose an interleaving approach in which GA and NN
iterations are interleaved, feeding their best solutions to each
other alternately. Interleaving requires that switching back
and forth between the two techniques be technically feasible.
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Switching between NN and GA approaches is not straightforward
given that the two approaches work quite differently. While GA is
a solution-space based approach, NN-based approach is a
problem-space based approach. In a solution-space based
approach, the solution is perturbed from one iteration to the
next, using some mechanism (such as crossover and mutation in
Genetic Algorithms). Tabu search, simulated annealing, genetic
algorithms and ant-colony optimization all belong to the class of
solution-space based approaches. In a problem-space approach,
the problem parameters are perturbed from one iteration to
another, while using the same heuristic. For example, in an RCPSP,
the problem parameter such as processing time may be altered
from one iteration to another, while applying the same heuristic
to obtain a different schedule. The makespan for the new schedule
is still calculated using the original problem parameters. The NN-
based approach provides a framework for applying a problem-
space based approach. With the help of a weight vector which is
modified after each iteration, weighted problem parameters are
used instead of original parameters. Using the same heuristic,
new solutions are generated in each iteration. A suitable weight
modification strategy guides the search.

In this paper, we will describe how to hybridize GA and
NN-based approaches. Our empirical testing demonstrates the
effectiveness of the Neurogenetic approach. We find that the
hybrid approach works better than either NN or GA approach
alone, for the same number of iterations. The rest of the paper is
organized as follows. In Section 2 we describe the problem
formulation. In Section 3 we discuss some solution techniques
such as serial and parallel schedule generation schemes and
double justification schemes used for solving the RCPSP. In
Section 4 we review the current literature for this problem.
Sections 5–7 describe the neural network approach, the genetic
algorithms approach and the Neurogenetic approach. Empirical
results are shown in Section 8. Finally, Section 9 provides a
summary of the paper and discusses future research ideas.
2. The problem formulation

Let N represent the set of activities of a project and let A

represent the set of arcs (or precedence relationships). The
project is then represented by a directed graph G={N, A}.
The activities are numbered 0 to n+1, where the 0th and the
(n+1)th activities are dummy activities representing start and end
activities, respectively. The processing time of the ith activity is di

(1r irn). There are K types of resources. The resources are
renewable in nature. The ith activity requires rik units of resource
k in each period of its execution and there are Rk units of the kth
resource. The start and finish time of each activity is represented
by Si and Fi, respectively.

The RCPSP with the objective of minimizing the makespan is
formulated as Christofides et al. [18]

Minimize Snþ1

Subject to : Sj�SiZdi ðj; iÞAA
X

iAPðtÞ

rikrRk;

t¼ 1; :::; T ; k¼ 1; :::;K SiZ0; iAN

where P(t) represents the set of activities in process at time t and T

is an upper bound on the project’s makespan.
3. Some solution methods

Since our paper focuses on heuristics and metaheuristics, we
will describe some solution methods that pertain to the heuristic
approach. We will not focus on exact solution approaches like
complete enumeration, branch and bound and dynamic program-
ming. In a heuristic approach, a schedule is generated activity by
activity. We will briefly describe the serial and parallel schedule
generation schemes and describe how these schemes are used in
conjunction with a priority heuristic. We also describe forward
and backward scheduling and backward–forward improvement
(BFI) or double justification scheme.

3.1. Serial and parallel schedule generation scheme

The heuristic approach for generating a solution to the RCPSP
is based on building a schedule from an activity list. An activity
list is a precedence feasible list of all activities of the given project.
Given an activity list L of all activities, a schedule can be built
using either a serial schedule generation scheme (S-SGS) or
parallel schedule generation scheme (P-SGS). In S-SGS, activities
in L are scheduled in the order in which they appear in L; they
are scheduled at the earliest clock time at which the required
resources become available.

In P-SGS, a clock is maintained. At each point in time, activities
that are precedence and resource feasible are scheduled. If more
than one activity can be assigned at a certain clock time, priority
is given to activity based on L. If no activities can be assigned at
that point in time, the clock is forwarded to the finish time of the
shortest in-process activity.

In a priority heuristic approach, L is determined using some
heuristic parameter such as latest finish time (LFT) or total
remaining work (RWK) etc.

3.2. Forward and backward scheduling

An RCPSP graph G={N, A} can be viewed either as a forward
problem or a backward problem. In the backward problem,
activity (n+1) is regarded as activity 0 and the entire graph
viewed in reverse. Using the same SGS and the same heuristic
such as LFT, RWK to generate the activity list L, the backward
approach often gives a different solution than the forward
approach. The better of the two solutions can be considered as
our solution. This method was first proposed by Li and Willis [3].
For any heuristic or metaheuristic technique, the problem can
be solved twice—once with the forward approach and once with
the backward approach and the better of the two solutions
considered.

3.3. Backward–forward improvement

Once a schedule has been generated using some SGS and some
L, it is sometimes possible to reduce the empty gaps in the Gantt
chart by scanning the Gantt chart in the reverse direction and
shifting the activities to the right. This shifting packs the Gantt
chart more densely thus reducing the makespan. Having thus
obtained a new packed schedule, a forward scan shifts the
activities again to the left, further packing the Gantt chart. This
approach of reducing the makespan is called backward–forward
improvement (BFI) or double justification. It was first introduced
by Valls et al. [4]. The counter is updated by adding two schedules
each time double justification is used. This approach can be used
to refine any solution obtained through any heuristic or
metaheuristic.
4. Literature review

The RCPSP literature dates back to the 1960s—Carruthers and
Battersby [5]. Several good review papers appeared in the
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1990s—Icmeli et al. [6], Ozdamar and Ulusoy [7], Herroelen et al.
[8], Brucker et al. [9]. More recent reviews can be found in
Hartmann and Kolisch [10], Kolisch and Padman [11] and Kolisch
and Hartmann [12]. Due to the NP-hard nature of the problem,
exact approaches work only for relatively smaller problems,
although many such approaches have been developed such as
zero-one programming [13–15], dynamic programming [5] and
implicit enumeration with branch and bound [16–23].

Many heuristic or priority-rule based approaches have been
proposed for this problem [24–29]. In multi-priority rule methods
a different priority rule is used at each iteration [27,30,31].
Sampling methods are used by Cooper [25], Alvares-Valdes and
Tamarit [26], Drexl [32], Kolisch [29], Kolisch [33], Kolisch and
Drexl [34], Schirmer and Riesenberg [35], Schirmer [36].

Genetic algorithms have been applied in Leon and Rama-
moorthy [37], Lee and Kim [38], Hartmann [39], Hartmann [40],
Alcaraz and Maroto [41], Coelho and Tavares [42], Hindi et al [43],
Toklu [44], Valls et al. [45]. Boctor [46], Cho and Kim [47] and
Bouleimen and Lecocq [48] have applied simulated annealing.
Tabu search based metaheuristics are proposed by Pinson et al.
[49], Baar et al. [50], Nonobe and Ibaraki [51] and Thomas and
Salhi [31]. Merkle et al. [52] proposed an ant-colony approach to
the RCPSP. Colak et al. [2] proposed a neural-network based
technique.
5. Neural-network based approach

The neural-network based approach was first proposed by
Agarwal et al. [53]. Colak et al. [2] applied that approach for the
RCPSP. In this approach a chosen priority rule (such as LFT or
RWK) and a chosen SGS (i.e. serial or parallel) is applied multiple
times. The best solution, after a certain number of trials, is saved
as the final solution. In each iteration, the activity list L is
different. How is the new activity list generated? Using a weight
vector W=(w0, w1,y, wn + 1). Suppose Q represents the vector of
parameter used in the chosen priority rule. For example, if the
chosen priority rule is ‘‘latest finish time’’, then let qi represent the
LFT for activity i and Q=(q0, q1,y,qn +1) represents the vector of
latest finish times of all activities. If the chosen heuristic is say
remaining work, then qi in Q represents the remaining work for
activity i. Let Qw represent a vector of weighted parameters
(w0 *q0 ,y, w1 *q1 ,y, wn +1 *qn + 1). If we assume a unit vector W,
then Qw=Q. For the first iteration we obtain L using Q. For
subsequent iterations, we use Qw to obtain a different L. After each
iteration W is updated using a weight update strategy to give a
new Qw, which in turn generates a new L, which produces a new
solution.

This NN-based approach is basically a local search approach
because the perturbed vector Qw produces a perturbed activity list
in the local neighborhood of the original activity list. The
approach is called NN-based because of its similarity with the
traditional neural networks in which a weight vector is used as
the perturbation mechanism. If a good priority rule and a good
SGS are used to produce the initial solution, the local search
around this original solution produces very competitive results as
shown in Colak et al. [2].
6. Genetic algorithms

Genetic Algorithms is a well established approach. For details,
see Goldberg [54]. When applying genetic algorithms to the
RCPSP, the activity list L is treated as a chromosome of the
population. Each activity’s ordered position number acts as a
gene of the chromosome. An initial population of chromosomes
is generated either randomly or by using some priority rules.
New chromosomes, for subsequent populations are generated
using crossover and mutation mechanisms. In this study two
point crossover and random mutation are used. Each new L

can be used to decode a new schedule using either serial or
parallel SGS. Double justification and forward and backward
scheduling can be applied to further refine the solution quality for
the same L.

Since a crossover between two different chromosomes can
result in a child chromosome which is very different from either
parent, the GA approach results in a more global search. This is in
contrast with the NN-based approach in which the search is
limited to a local neighborhood.
7. The Neurogenetic approach

In the Neurogenetic approach, we interleave GA search
iterations with NN search iterations. The idea is that after a few
GA iterations, we can develop a set of ‘‘good’’ activity lists
(chromosomes), i.e. activity lists that produce good solutions,
and that are distributed globally in the solution-space, i.e. belong
to different search neighborhoods. If we feed these good activity
lists as initial activity lists for NN search to perform some
intensive local search around each of these good activity lists, we
can get improved solutions not possible by GA alone or NN alone.
To further improve the solution quality, the better solutions
obtained using NNs can be introduced to the GA population thus
improving the genetic material for future GA iterations. The
interleaving steps of the Neurogenetic approach are outlined in
Fig. 1.

We now describe the algorithm of Fig. 1 in some detail. Here g

represents the number of GA solutions that we want to find
at each interleaving. For finding g, we are multiplying p

(the proportion for GA iterations) by u (the total number of
iterations that we need to find) and then we are dividing the
result by t which is the number of interleaving that we require.
For example say that we want to find 1000 total solutions and 80%
of which we want to devote to GA. Also say the number of
interleaving is 4. So, here u is 1000, p is 0.8 and t is 4. We can find
g using the formula: g=(1000*0.8)/4=200 which is number of
solutions that we will find at each interleaving. The next formula
a=(1�p) *u/(t*m) is similar to the first one and used for finding
the number of neural-network iterations at each interleaving.
Assume that m is 5. In this example, a will be (1–0.8)*1000/(4*5).
So a, which represents the number of solutions found by NN per
interleaving, per GA solution is 200/20=10.
7.1. The challenge: switching form GA to NN

Once m good solutions are selected from the GA stage (Step 4
of Fig. 1), we have m activity lists corresponding to these m

solutions. Let us call these activity lists LGA,i , where i goes from 1
to m. Each of these activity lists is now fed to the neural network
approach (Step 5), which will try to find an improved solution in
the local neighborhood of that activity list. For the NN approach to
perform local search around LGA,i, we need to generate a vector W

such that W*Q generates LGA,i. Once such a W has been
determined, then NN-search iterations can perform a local search
around LGA,i. If we apply the NN-based approach from scratch we
do not have an issue, because we always start with a unit vector
W and Wn+ 1 is derived from Wn, where n is the iteration number.
To start from an arbitrary L as the initial solution, we need to
determine a W that corresponds to L. In the next subsection, we
describe an algorithm to obtain the W vector.



Step 1: Decide on the number of iterations to search, say u.
  Decide on the number of interleavings to use, say t.
  Decide the proportion for GA/NN iterations, say p and (1-p)
  Decide on the number of GA solutions to feed to NN at each interleaving, say m
  Decide population size, say s
  Determine number of GA iterations per interleaving g=(p*u)/t
  Determine number of NN iterations per GA solution per interleaving, a = (1-p)*

u/(t*m)
 Step 2: Generate Initial Population for GA using the NN approach 

Step 3: Run GA search for g number of iterations 
Step 4: Select m solutions from the GA population 
Step 5: Determine NN weights for each of m selected solutions 
Step 6: Run NN search for a iterations for each of m solutions 
Step 7: If better solutions found by AugNN than those in the GA population, translate 

solution to GA chromosome and include in population, replacing the worst 
solution in the population. 

Step 8: If u solutions are not found  then go to step 3, else stop. 

Fig. 1. Steps of Neurogenetic approach.

Loop until for each gene, the cardinal position of gene on source is the same as the target 
cardinal position
 If a gene is out of place, i.e. its position is different from the target position
    Let wa and wb represent the weights corresponding to the out of place gene and
    the target position gene  
  If (wa * qa > wb * qb and positiona > positionb) and heuristic is based on non- 
  increasing order of q then  
   Set wa = 0.1 + wb * (qb /qa)
  Elseif (wa * qa > wb * qb and positiona > positionb) and heuristic is based on non-
  decreasing order of q then  
   Set wa = wb * (qb /qa) – 0.1
  End If  
 End If  
End Loop

Fig. 2. Algorithm to generate W.
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7.1.1. Algorithm to generate W:

Suppose one of the good activity lists generated through GA
iterations is Lt (Target L). The problem is to determine a W

such that W*Q produces Lt. We start with Ls (Source L) which
is obtained by using a unit vector W and Q. The weight gene-
ration algorithm given in Fig. 2 is applied to modify Ls until it
equals Lt.

Let us look at a numerical example. Suppose there are five
activities and the vector Q based on the minimum latest finish
time heuristic is (4, 7, 9, 14, 15). Assume a vector of weights
W=(1, 1, 1, 1, 1). So, the ranking based on W*Q=(4, 7, 9, 14, 15) is
(1, 2, 3, 4, 5). Assume that GA produces a string of (1, 4, 3, 2, 5). If
we look at the source and target, we notice that the gene at
position 2 (activity 2) is out of place. Here, instead of activity 2, we
need activity 4. So we set w4=w2 * (q2/q4)–0.1, or w4=1*(7/14)–
0.1=0.4. Now the new weight vector becomes W=(1, 1, 1, 0.4, 1)
and the new W*Q=(4, 7, 9, 5.6, 15). The new ordering based on
W*Q is (1, 4, 2, 3, 5). If we look at source and target again, we see
that position 3 (activity 2) of source is out of place. Therefore, we
set w3=w2 * (q2/q3)–0.1, or w3=1*(7/9)–0.1=0.67. The new W is
(1, 1, 0.67, 0.4, 1) and the new W*Q is (4, 7, 6.03, 5.6, 15). The new
ordering based on W*Q is (1, 4, 3, 2, 5). At this point we check the
source and target strings again. The orderings are equal to each
other and we stop.

An alternative approach for finding the weight vector is to let
the weight vector be the vector of elements tai/qi where qi is the
ith element of Q vector and tai is the target activity at the ith
element or position. For the example above, W=(1/4, 4/7, 3/9,
2/14, 5/15) because the ta vector is (1, 4, 3, 2, 5) and the Q vector
is (4, 7, 9, 14, 15). The W*Q vector becomes (1, 4, 3, 2, 5) which
gives the ranking of (1, 4, 3, 2, 5).
7.2. Switching form NN to GA

Switching from NN encoding to GA encoding is quite
straightforward. Here, we first find the ordering of activities
using weighted parameters (W*Q). This ordering represents the
order of activities in the GA chromosome. Suppose that the weight
vector W is (0.3, 0.7, 0.9, 0.75, 0.6) and Q is (9, 7, 4, 6, 11). Here
W*Q becomes (2.7, 4.9, 3.6, 4.5, 6.6) which gives a ranking of (1, 3,
4, 2, 5) which is also the GA encoding.
8. Computational experiments and results

We implemented three approaches, the NN approach, the
GA approach and the Neurogenetic approach in Visual Basic 6.0
and executed the experiments on a Pentium IV, 2.8 GB personal
computer. Well-known benchmark problem instance sets
from PSPLIB (http://www.bwl.uni-kiel.de/Prod/psplib/index.html)
were used to evaluate the algorithm. The sets J30, J60 and J90
consist of 480 problem instances with four resource types and 30,
60 and 90 activities, respectively. The set J120 consists of 600
problem instances with four resource type and 120 activities.

For NN-based approach, we use the priority rule LFT. The
stopping criterion is to stop if the solution is equal to the lower
bound which is the critical path calculated without resource
constraints or if a predetermined number of maximum schedules
are reached—in our case either 1000 or 5000. The learning rate is
set to 0.05 and the weights are initialized at 1 and modified after
each iteration. For the GA part, we use two point crossover and
mutation probability is set to 0.5. Population size is used as 30. As
the neurogenetic parameters, the number of interleavings is set to

http://www.bwl.uni-kiel.de/Prod/psplib/index.html


Table 2
Average deviations from the optimal solution for J30.

Algorithm SGS Reference Number of schedules

1000 5000

Scatter search, path relinking Both [55] 0.05 0.02

Filter and fan Serial [56] 0.09 0.00

Hybr scatter search Both [57] 0.10 0.03

GA, TS, path relinking Both [58] 0.10 0.04

Decomposition based GA Both [59] 0.12 0.04

Neurogenetic (FBI) Both this paper 0.13 0.10

Sampling—LFT–FBI Both [60] 0.23 0.14

GA—forw.–backw. Both [61] 0.25 0.06

HNA—FBI Both [2] 0.25 0.11

Sampling—LFT–FBI Both [62] 0.25 0.15

GA—hybrid, FBI Serial [45] 0.27 0.06

Scatter search—FBI Serial [63] 0. 27 0.11

GA—forw.–backw. Serial [41] 0.33 0.12

GA—FBI Serial [4] 0.34 0.20

Table 3
Average deviations from the critical path based lower bound for J60.

Algorithm SGS Reference Number of schedules

1000 5000

PSO [64] 9.52 9.01

Filter and fan Serial [56] 10.66 10.56

Scatter search, path relinking Both [55] 11.12 10.74

Decomposition Based GA Both [59] 11.31 10.95

Neurogenetic (FBI) Both this paper 11.51 11.29

GA—hybrid, FBI Serial [45] 11.56 11.10

Hybr scatter search Both [57] 11.59 11.07

HNA—FBI Both [2] 11.72 11.39

Scatter search—FBI Serial [63] 11.73 11.10

GA—forw.–backw Both [61] 11.89 11.19

Sampling—LFT–FBI Both [60] 12.04 11.72

GA—FBI Serial [4] 12.21 11.27

Table 4
Average deviations from the critical path based lower bound for J90.

Algorithm SGS Reference Number of schedules

1000 5000

GA—hybrid, FBI Both [45] NA 10.46

Filter and fan Serial [56] 10.52 10.11

Decomposition based GA Both [59] 10.80 10.35

Neurogenetic (FBI) Both this paper 11.51 11.29

Table 1
Average percent deviations for NN, GA and Neurogenetic approaches.

Approach Dataset Number of schedules evaluated

1000 5000

NN approach alone J30 0.25 0.11

GA J30 0.19 0.15

Neurogenetic J30 0.13 0.10

NN approach alone J60 11.72 11.39

GA J60 11.66 11.52

Neurogenetic J60 11.51 11.29

NN approach alone J90 11.21 11.10

GA J90 11.31 11.11

Neurogenetic J90 11.17 11.06

NN approach alone J120 34.94 34.57

GA J120 35.11 34.95

Neurogenetic J120 34.65 34.15

Table 5
Average deviations from the critical path based lower bound for J120.

Algorithm SGS Reference Number of schedules

1000 5000

Filter and fan Serial [56] 32.96 31.42

Decomposition based GA Both [59] 33.55 32.18

GA—hybrid, FBI Serial [45] 34.07 32.54

Scatter search, path relinking Both [55] 34.49 32.61

Neurogenetic (FBI) Both this paper 34.65 34.15

HNA—FBI Both [2] 34.94 34.57

Scatter Search–FBI Serial [63] 35.22 33.10

GA—FBI Serial [4] 35.39 33.24

Sampling—LFT–FBI Both [60] 35.98 35.30

Sampling—LFT–FBI Both [62] 36.32 35.62

GA—forw.–backw. Both [61] 36.53 33.91
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5 and the proportion of GA is taken as 90%. Also the number of GA
solutions to feed NN is used as four. We attempted both the
weight generation schemes suggested in Section 7.1, but did not
find any significant difference between the two and report the
result of the first approach.

Table 1 presents the results of NN, GA and NG approaches for
1000 and 5000 solutions for each of the four datasets. For each
dataset, NG performed better than NN or GA alone. Tables 2–5
display the results obtained by our algorithm and other tested
heuristics for 1000 and 5000 schedules, respectively. In these
tables we present the type of heuristics, the type of schedule
generation scheme used, the authors of each heuristic and the
average deviation from the critical path based lower bound (from
the optimal solution for J30 instances) for 1000 and 5000
schedules, respectively. In each table, the heuristics are sorted
according to descending performance with respect to 1000
schedules.

Table 2 presents the percentage deviations from the optimal
makespan for the instance set J30 in which all problem instances
have been solved to optimality by Demeulemeester and Herroe-
len’s [20] branch and bound procedure. Our algorithm solved 456
out of 480 problems to optimality and the average deviation from
the optimal solution is 0.13% and 0.10% for 1000 and 5000
schedules, respectively.

For J60, J90 and J120 problem sets, the optimal solutions are not
known, so the results are reported in terms of average percentage
deviation from the critical-path based lower bound. Table 3
summarizes the results for J60 test instances. 295 out of 480
instances are solved to critical path based lower bound. The
average deviation from the critical path based lower bound is 11.51
and 11.29 percent for 1000 and 5000 schedules, respectively.

Table 4 summarizes the results for J90 test instances. 331 out of
480 instances are solved to critical path based lower bound. The
average deviation from the critical path based lower bound is 11.17
and 11.06 percent for 1000 and 5000 schedules, respectively.

Table 5 summarizes the results for J120 set. One hundred and
fifty seven out of 600 problems matched the critical path based
lower bound. The average deviations are 34.65% and 34.15%,
respectively, for 1000 and 5000 schedules. These results are very
competitive with other techniques used in the literature.
9. Conclusions

In this paper we addressed a well-known scheduling problem,
the resource constrained project scheduling problem (RCPSP).
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Given the NP-hard nature of the problem, heuristics and
metaheuristics are needed to solve larger instances of this
problem. We proposed, developed and tested a new hybrid
metaheuristic approach called the Neurogenetic approach, which
is a hybrid of a neural network approach and the genetic
algorithms approach. In this hybrid approach, we interleave the
NN and the GA approaches so each technique feeds its best
solution to the other technique. GAs are known to perform well as
a global search technique, whereas the NN approach is good at
intensive local search. Because of the complementary advantages
of these approaches, the two approaches complement each other
well when interleaved. Empirical testing demonstrated that the
NG approach gave better results than either NN or GA approach
alone for the same number of schedules generated. We also
implemented several solution enhancement techniques such as
double justification, better of forward and backward schedules
and better of serial and parallel schedule. The results from the NG
approach were quite competitive with other techniques used in
the literature.
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