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Abstract Given the NP-Hard nature of many optimization problems, it is often impracti-
cal to obtain optimal solutions to large-scale problems in reasonable computing time. For
this reason, heuristic and metaheuristic search approaches are used to obtain good solutions
fast. However, these techniques often struggle to develop a good balance between local and
global search. In this paper we propose a hybrid metaheuristic approach which we call the
NeuroGenetic approach to search for good solutions for these large scale optimization prob-
lems by at least partially overcoming this challenge. The proposed NeuroGenetic approach
combines the Augmented Neural Network (AugNN) and the Genetic Algorithm (GA) search
approaches by interleaving the two. We chose these two approaches to hybridize, as they of-
fer complementary advantages and disadvantages; GAs are very good at searching globally,
while AugNNs are more proficient at searching locally. The proposed hybrid strategy capi-
talizes on the strong points of each approach while avoiding their shortcomings. In the paper
we discuss the issues associated with the feasibility of hybridizing these two approaches and
propose an interleaving algorithm. We also provide empirical evidence demonstrating the
effectiveness of the proposed approach.
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1 Introduction

Discrete combinatorial problems such as knapsack, scheduling and the traveling sales-
man problem appear frequently in many domains including computer science, indus-
trial engineering, manufacturing and operations management. Given the NP-hard nature
of many of these problems, obtaining optimum solutions for large problems using ex-
act methods is impractical in terms of computational time. Heuristics and metaheuris-
tics are therefore commonly used as search mechanisms for obtaining satisfactory so-
lutions in reasonable time. Over the last two decades, various intelligent metaheuristic
search procedures such as tabu search (Glover 1989), genetic algorithms (Goldberg 1989;
Chu and Beasley 1998), neural networks (Hopfield and Tank 1985), augmented neural
networks (Agarwal et al. 2003, 2006), simulated annealing (Kirkpatrick et al. 1983;
Cho and Kim 1997), ant-colony optimization (Dorigo et al. 1999; Merkle et al. 2002), elec-
tromagnetism (Birbil and Fang 2003), the great-deluge algorithm (Dueck 1993) etc. have
been proposed. Some of these metaheuristics, such as genetic algorithms, neural networks
and ant-colony optimization have been inspired by biological phenomena. Many others such
as simulated annealing, electromagnetism and the great-deluge algorithms have been in-
spired by various other phenomena observed in nature.

The idea behind metaheuristic search is to iteratively search potentially good feasible
solution neighborhoods, so that a reasonably good solution is obtained quickly. The trade-
off in search lies between what are termed global and local search. Strategies that tend to
intensify search in a local neighborhood run the risk of being trapped in that neighborhood,
thus making it difficult to explore other good neighborhoods. Alternatively, strategies that
thin out the search to gain access to many neighborhoods often fail to sufficiently intensify
their local search. Attempting to balance the local-search and global-search performance so
as to generate solutions as close to optimal as possible is a recurring challenge faced by
most metaheuristic procedures. Tabu search, for example, proposes a diversification strat-
egy for global search and an intensification strategy for local search; Simulated Annealing
proposes a high temperature value for global search and a lower temperature value for local
search; the magnitude of temperature parameter being correlated to the magnitude of per-
turbation. Generally, mechanisms that tend to be strong in global search tend to be weak in
local search and vice versa. For example, genetic algorithms have been found to be partic-
ularly strong in global search, but somewhat weak in local search (Gen and Cheng 1997).
On the other hand, the augmented-neural-network approach has been found to be strong in
local search, but weak in global search (Agarwal 2009). Hybrid searches which draw on the
strengths of two or more approaches have also been proposed in the literature (Osman 1993;
Glover et al. 1995; Debels et al. 2006). Combining a deterministic local search, such as 2-
OPT or 3-OPT for the traveling salesman problem (Lin and Kernighan 1973) or double jus-
tification for scheduling problems (Tormos and Lova 2001), with global search techniques
such as genetic algorithms is quite common. Combining non-deterministic local search ap-
proaches such as tabu search with genetic algorithms is also common (Glover et al. 1995).

In this paper we consider the augmented-neural-network (AugNN) approach, which is
a non-deterministic local-search approach, as a candidate for combining with genetic al-
gorithms. We call the proposed hybrid metaheuristic the NeuroGenetic approach (NG).
Although the AugNN approach is relatively new compared to other long-established ap-
proaches such as Tabu Search and Simulated Annealing, the AugNN approach has been
shown to outperform Tabu Search and Simulated Annealing for certain scheduling prob-
lems (Colak and Agarwal 2005; Colak et al. 2006). In the next section we discuss the mo-
tivation behind our choice of combining the AugNN and the GA approaches and discuss
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Fig. 1 Contrasting advantages and disadvantages of GA and AugNN approaches

the challenges involved in hybridizing them. In Sect. 3, we discuss the feasibility of such
hybridization and provide some algorithms and strategies for this hybridization process. In
Sect. 4 we discuss some empirical results to demonstrate and validate the effectiveness of
the approach. In the concluding section, we summarize the paper, offer some concluding
remarks and propose some ideas for future work.

2 NeuroGenetic approach

2.1 Motivation

First we attempt to explain our motivation for hybridizing the AugNN and GA approaches.
Figure 1 provides some contrasting advantages and disadvantages of the AugNN and the
GA approaches.

In comparing these two techniques, we noticed that the advantages and disadvantages
of the two approaches are very complementary and this observation was the motivation
behind our initial consideration of potentially hybridizing these two approaches. The most
striking difference in the techniques is obviously their contrasting strengths in local and
global search. But in addition to that, in our experience with the AugNN and GA approaches,
we noticed that most of the improvement with the AugNN occurs early in its search process,
i.e. the first 100 iterations, whereas GAs on the other hand tend to improve slowly and
steadily throughout a much longer search process. We posit that if we could successfully
interleave the searching of these two techniques, iteratively feeding solutions from one to
the other, that the overall search performance should be better than either approach alone.
The basic idea being to allow our GA to run on a population of chromosomes derived at
least partially from AugNN solutions and then to allow the AugNN to attempt to improve
upon the best found GA chromosomes and so on. In completing this iterative process we
are essentially alternating between global search steps using the GA and local search steps
using the AugNN. In an effort to take advantage of the fact that the AugNN tends to exhaust
its potential solution improvement relatively quickly in terms of the number of iterations
required, whereas the GA provides slow and steady improvement, we recommend that the
AugNN interludes be much shorter than those of the GA. Figure 2 shows a schematic of this
interleaved approach.

2.2 Challenges

While in theory, the idea of hybridizing to draw upon the strengths of two (or more) meta-
heuristics is appealing, the actual implementation may not necessarily be trivial, mainly on
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Fig. 2 Schematic of the NeuroGenetic approach
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account of the differing nature of the encoding schemes required by the various approaches
for a given problem type. For example, when using GAs, depending on the problem type,
an appropriate chromosome string encodes the solution, either explicitly or implicitly. For
solving the 0–1 knapsack problem, for instance, a chromosome string of 0s and 1s of length
equal to the number of items represents a solution explicitly. Each position in the string
represents one item. Those items represented by a one in the string have been added to
the knapsack and those represented by a 0 have not. For scheduling problems, on the other
hand, a chromosome of length equal to the number of activities represents a potential so-
lution implicitly. The string merely represents the order in which the activities are to be
assigned—the actual clock-times of assignment for each activity is determined from the
given chromosome’s ordering of activities. When using the AugNN approach, on the other
hand, no such chromosome strings are used for encoding solutions; instead, a weight matrix
in conjunction with a heuristic is used to build a solution. Simulated annealing, ant-colony
optimization and tabu-search approaches use encoding schemes which are altogether differ-
ent from those of genetic algorithms and AugNNs and also different from each other. The
challenge of hybridizing, therefore, is to develop a strategy that permits switching between
the encodings of the alternative metaheuristics.

Next we discuss the challenges specific to AugNN and GA interleaving. We observe
that in the AugNN approach, the solutions are obtained in a sequence with each iteration
requiring a weight matrix. In order to obtain the solution in the t th iteration, the weight
matrix at the end of the (t − 1)th iteration is required. The first solution assumes an identity
matrix. So an issue that needs to be addressed is—if we are to interleave AugNN search
with GA search, then we should be able to take a given GA solution and improve upon it
using AugNN search. This, in turn, requires that there be a way to determine the weight
matrix which in conjunction with a heuristic will generate a given GA solution in essence
feeding a good GA solution into the AugNN approach. Whether determining such a weight
matrix is theoretically feasible is not obvious and may not be possible in all cases. The
feasibility of determining the weight matrix is critical, for if it is not feasible, then the idea of
interleaving GA with AugNN would also not be feasible. Similarly, a GA search goes from
one generation to the next in a sequence. Generation n is derived from generation n − 1.
So we have a similar challenge in the reverse direction—is it possible to take an AugNN
solution and translate it into a chromosome string so that GA search can incorporate good
AugNN solutions as chromosomes in future generations? In the next section, we address
these feasibility of hybridization of AugNN with GA.

3 Feasibility of hybridization

As discussed above, in order to successfully interleave GA and AugNN search, it should be
feasible to determine a set of weights which in conjunction with a given heuristic is able to
generate a given GA solution, and vice versa, it should be feasible to translate an AugNN
solution into a GA chromosome string. In order to understand how the encodings between
genetic algorithms and neural networks can be switched, it is first necessary to review and
understand the encodings of each of these techniques.

3.1 AugNN encoding

In this section we describe the basics of the AugNN encoding scheme so that the switching
procedure can be understood. Some notation is necessary to understand the encoding:
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ρ: represents an optimization problem, expressed as ρ : � = f (χ) s.t. ψ where � is the
objective function, a function of χ . χ represents the problem parameters and ψ represents
a set of constraints. We consider only linear integer programming problems because to
be solvable by this method, a problem needs to satisfy three conditions (i) it should have a
good priority-based heuristic since a good priority-based heuristic is integral to the AugNN
approach, (ii) it should be solvable using GAs and (iii) the encoding scheme of the GA
should allow switching to AugNN encoding and vice versa. Typically non-linear, non-
integer problems will not satisfy all three conditions whereas linear integer programming
problems will.

�opt: represents the optimal solution of ρ.
σ : represents a deterministic heuristic that solves ρ to an approximate solution �σ.. It is
assumed that σ attempts to find the best possible solution, i.e. if the solution space is
convex, then σ will attempt to find a solution as close to the boundary solutions as possible.
We also assume that these heuristics work by prioritizing some problem-specific parameter
of the problem.

n: the length of the problem. For example for a scheduling problem ρ, n would be the
number of activities. χ would be the set of a vector of values of processing times and
amounts of resources needed. The constraint set ψ would be the precedence matrix and the
constraint on the availability of resources. For a knapsack problem, n would be the number
of objects, χ would be value of the objects and the resource needed for each object. ψ

would be the capacity constraints for the resources.
ϒ : represents the problem specific parameters. Using ϒ , a given σ produces a permutation
ζ(ϒσ ) of some aspect of the problem. For example, for the scheduling problem, utiliz-
ing the heuristic “Longest Processing Time Next”, ϒ is the permutation vector in which
activities are sorted in non-decreasing order of their processing times. For the knapsack
problem, depending on the heuristic being used, ϒ could be the vector of pseudo-utility
ratios of the objects. ϒ is assumed to be of length m. We also assume that all elements of
ϒ are positive.

w ∈ �m: Weight vector of m real numbers. Without loss of generality, we can talk about a
weight vector instead of a weight matrix.

η: Some feasible solution of ρ.

The encoding for an AugNN is implicitly contained in the set of σ , ϒ and w ∈ �m.
The application of the heuristic σ to the vector (w.ϒ) produces a solution. Agarwal (2009)
proposes and proves the following theorem:

Theorem Given an integer linear optimization problem, ρ : � = f (χ) s.t. ψ and a deter-
ministic heuristic σ which uses a problem-specific parameter vector ϒ of length m to find
the best possible solution of ρ, then for each solution η of ρ, there exists a set 
 of weight
vectors w ∈ �m such that the application of the heuristic σ using the weighted parameter
vector (w.ϒ) can produce η of the problem ρ and that |
| = ∞.

This theorem basically says that given a solution η of a problem ρ, there exists an infinite
number of weight vectors, w, which in conjunction with the given heuristic can produce
the given solution. The existence of the required weight matrix is thus established by this
theorem. For proof, see Agarwal (2009). In this encoding, σ and ϒ are constant so the only
thing that varies is the weight vector w. Although, based on this theorem, we know that the
sought after weight vectors exist, whether or not it is possible to find such a weight vector
represents a different challenge. One of the contributions of this paper is that we show that
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Fig. 3 The AugNN algorithm

for certain types of GA encoding schemes and certain types of heuristics, determining such a
weight vector is feasible whereas for certain types of heuristics it is not feasible. In general,
if the priority heuristic used in the AugNN approach uses a priority list that is determined
a priori using some problem parameter and remains constant throughout the heuristic, then
determining a weight vector is feasible. If the priority list either (i) changes during a single-
pass of the heuristic or (ii) is created on the fly, i.e. not a priori, then determining such a
weight matrix will not be feasible. We provide an algorithm for generating a w vector given a
permutation of ϒ that generates the given solution η, assuming that the solution is obtainable
through the permutation of ϒ . While this assumption is valid for most problems because
most heuristics are based on a prioritization of some aspect of the problem, it may not work
in some cases. For example in parallel scheduling algorithms, no initial permutation of any
problem parameter is used. Also, for the knapsack problem, certain heuristics, such as the
Kochenberger heuristic (Kochenberger et al. 1974), rely on a recalculation of the problem-
specific parameter after each item is added to the knapsack. For such heuristics which do not
use any preprocessed ordered vector of problem parameters that remains constant or static
throughout the heuristic algorithm, it will not be feasible to directly obtain a suitable weight
vector. However, in such situations, heuristic approximations can often be used to overcome
the problem. They do so by using predetermined vectors of problem parameters which do
not require the limiting iterative recalculations as mentioned above. Figure 3 outlines the
basic AugNN algorithm.

3.2 GA encoding

In genetic algorithms, a chromosome string represents a solution either explicitly or im-
plicitly, depending on the nature of the problem and the decision variables. An example
of a chromosome string where the solution is explicit, as discussed earlier, is the encoding
for the knapsack problem. We call this Encoding Type 1. An example of a problem which
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has a chromosome string that represents the solution implicitly is the scheduling problem.
In implicit coding, the solution can be generated using only the information contained in
the chromosome string. For example, the string might represent an ordering of activity as-
signments. We call this Encoding Type 2. The details of these two types of encoding are
described next.

3.2.1 Encoding Type 1

In the first type of encoding, the chromosome string looks like (0 1 0 0 1 0 1 1). The elements
of this chromosome represent the binary 0/1 values of the decision variable. This type of
problem is exemplified through a knapsack problem.

Example of a single-dimension Knapsack problem:

Max
∑

i∈N

cixi

s.t.
∑

i∈N

aixi ≤ b,

xi = 1, if item i is selected, 0 otherwise.

Here, ci represents the value of the items, ai is the size (or cost) xi is the 0/1 decision
variable, N is the number of items, b is the size capacity (or cost budget). Note that in a
multi-dimension knapsack problem, there will be several constraints, one for each of the
dimensions.

Let us consider a specific five-item (N = 5) problem as follows:

Item ci ai ci/ai

1 8 4 2

2 6 2 3

3 2 2 1

4 10 4 2.5

5 8 2 4

Suppose the knapsack capacity (b) is 8. The goal of the problem is to determine which
items to place in the knapsack in order to maximize the value (ci) of the knapsack without
violating the knapsack capacity. Suppose we are interested in a solution in which items 1, 3
and 5 are selected for the knapsack and use the heuristic “Highest Value-to-Size Ratio next”
(HVSR). The GA encoding for this solution is (1 0 1 0 1). The question is—can we produce
a weight vector w which in conjunction with the HVSR heuristic will give the GA solution
of (1 0 1 0 1).

Algorithm for switching from GA encoding Type 1 to AugNN encoding

Let’s consider the example problem described above. The GA encoding for the solution
of selected items 1, 3 and 5 is (1 0 1 0 1). The AugNN encoding is a weight vector w =
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(w1,w2,w3,w4,w5) in conjunction with heuristic HVSR. Given the chromosome string of
(1 0 1 0 1) how do we determine w? Following is a general procedure:

Repeat until all pairs of genes agree with the target order
{ Consider the next pair of genes

Check if the weighted parameter value and the heuristic agree with the target order
If not, adjust weights as follows:
{ Let wa and wb represent the weights corresponding to the first gene and the target

gene
For permutations based on decreasing order of parameter

Set wa = wb ∗ (paramb/parama) − α/parama

For permutations based on increasing order of parameter,
Set wa = wb ∗ (paramb/parama) + α/parama

}
}

In the above pseudocode, α is an arbitrary positive real number. The value of α must
be chosen carefully. Although any positive value will force the switch, a value too high
might adversely affect the relative gene position with respect to other genes and therefore
could delay convergence. For practical purposes, α could range between 0.05 to 0.5. We
experimented with some values and determined that a value of 0.1 works quite well.

We will illustrate this general procedure with the help of the example problem.

Step 1. We start with a w vector of (1,1,1,1,1) so that w ∗ (ci/ai) of (2.0,3.0,1.0,2.5,4.0).
Step 2. Consider the pair of genes 1 and 2. According to the weighted parameter values,

item 2 is preferred over item 1 which disagrees with the target order. So, we want

w1 ∗ 2 > w2 ∗ 3, or w1 > w2 ∗ 3/2

since w2 = 1, w1 > 3/2, assuming α = 0.1, set w1 = 1.6, w = (1.6,1,1,1,1) and w ∗
(ci/ai) = (3.2,3.0,1.0,2.5,4.0).

Step 3. Pairs (1,2), (1,3), (1,4) and (1,5) agree. Pair (2,3) does not agree. Item 2 will be
selected over item 3 whereas we need to select item 3. So w3 > w2 ∗ (3/1); assuming α =
0.1,w3 = 3.1. New w = (1.6,1,3.1,1,1) and new w ∗ (ci/ai) = (3.2,3.0,3.1,2.5,4.0).

The vectors in each step are summarized in Table 1.

Table 1 Summary of w and w ∗ (ci/ai ) vectors for all steps

Item (ci/ai ) Step 1 Step 2 Step 3

w w ∗ (ci/ai ) w w ∗ (ci/ai ) w w ∗ (ci/ai )

1 2 1 2 1.6 3.2 1.6 3.2

2 3 1 3 1 3 1 3

3 1 1 1 1 1 3.1 3.1

4 2.5 1 2.5 1 2.5 1 2.5

5 4 1 4 1 4 1 4
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3.2.2 GA encoding Type 2

In the second encoding type, the chromosome looks something like (1,4,6,5,9,2,3,8,7).
This type of encoding represents an ordering of items. For example in a TSP, this will rep-
resent the order in which the cities are visited. Alternatively, in a scheduling problem, this
encoding may represent the order in which the activities will be scheduled assuming that
they are resource and precedence feasible.

Algorithm for switching from GA encoding Type 2 to AugNN encoding

The general algorithm to determine the weight vector for this type of encoding is as follows:

Repeat until for each gene, the position based on w ∗ param is the same as the target
position
{ If a gene is out of place,

Let wa and wb represent the weights corresponding to the out of place gene and
the target position gene
If (wa.parama > wb.paramb and positiona > positionb) then

If (heuristic based on non-increasing order of param) then
Set wa = wb ∗ (paramb/parama) − α/parama

Else
Do nothing

Else
if (wa.parama > wb.paramb and positiona < positionb) then

If (heuristic is based on non-decreasing order of param) then
Set wa = wb ∗ (paramb/parama) + α/parama

Else
Do nothing

Else
If (wa.parama < wb.paramb and positiona > positionb) then

If (heuristic based on non-decreasing order of param) then
Set wa = wb ∗ (paramb/parama) − α/parama

Else
Do nothing

Else
If (wa.parama < wb.paramb and positiona < positionb) then

If (heuristic based on non-increasing order of param) then
Set wa = wb ∗ (paramb/parama) + α/parama

Else
Do nothing

End If
}

Example Let us say we are scheduling activities in a CPM/PERT chart and we are using
the heuristic of “minimum latest finish time first” (Min LFT). Suppose there are eight
activities and the vector F of their latest finish times is (0,5,9,6,10,14,12,18). As-
sume a vector of weights w = (1,1,1,1,1,1,1,1). Assume that GA produces a string of
(1,2,3,5,4,7,6,8). The ranking based on w ∗F is (1,2,4,3,5,7,6,8). We notice that the
gene at position 3 (activity 4) is out of place. The target position is position 5 (activity 5).



Ann Oper Res (2010) 174: 185–199 195

So, set w3 = w5 ∗ (param5/param3) + 0.1, or w3 = 1 ∗ (10/9) + 0.1 = 1.21.
So the new w = (1.0,1.0,1.21,1.0,1.0,1.0,1.0,1.0) and the new w∗F = (0,5,10.9,6,

10,14,12,18). The new ordering based on w ∗ F is (1,2,3,5,4,7,6,8) which is the target
string.

Algorithm for switching from AugNN encoding to GA encoding

Switching encoding schemes from AugNN to GA is a simpler process. For both the encoding
types, we will use the same examples as above.

Encoding type 1 Suppose the weight vector w = (1.5,2.2,1.8,3.1,0.4)

We simply calculate the w∗(ci/ai) vector or (3.0,6.6,1.8,3.25,1.6) based on the HVSR
heuristic, items 2 and 4 are selected so the chromosome string is (0 1 0 1 0).

The general algorithm is:

Compute the weighted parameter vector
Apply the chosen heuristic to determine the solution
Decode the solution to create the corresponding chromosome string.

Encoding type 2 Suppose the weight vector is (1.5,2.5,0.3,1.8,3.2,2.2,2.8,3) and F is
(0,5,9,6,10,14,12,18). w ∗ F is (0.0,12.5,2.7,10.8,32.0,30.8,33.6,54) which gives a
ranking of (1,3,4,2,6,5,7,8) which is also the GA encoding.

The general algorithm is:

Compute weighted parameter vector
Order the elements of the vector based on the chosen heuristic.

4 Empirical evidence

In order to test the effectiveness of the proposed approach, we focused on the multidimen-
sional knapsack problem. Although the one-dimensional knapsack problem is not NP-Hard,
the multidimensional problem is. This problem has received a lot of attention in the litera-
ture (Kochenberger et al. 1974; Senju and Toyoda 1968; Gavish and Pirkul 1985). Chu and
Beasley (1998) developed a large set of benchmark problems and also developed an effective
GA procedure to solve those problems. We coded (i) the GA search algorithm as described
in Chu and Beasley (1998), (ii) an AugNN search algorithm (described in Fig. 3) and (iii) a
NeuroGenetic search algorithm as described in this paper (Fig. 2). Our code was written in
Visual Basic 6.0, running on Pentium IV machine with 1 GB memory. Chu and Beasley’s
data set is made up of nine subsets of problems of sizes 100×5, 100×10, 100×30, 250×5,
250 × 10, 250 × 30, 500 × 5, 500 × 10 and 500 × 30. A 500 × 5 problem has 500 items
and 5 constraints. Each subset consists of 30 problems. On each subset, we ran two sets of
experiments. In set one, a run was terminated once 5,000 unique solutions were found. In
set two the run continued until 10,000 unique solutions were found. In each experiment, for
the NeuroGenetic approach, we devoted 95 percent of the search iterations to the GA with
the remaining 5 percent to AugNN. There were 5 interleavings. In each interleaving, 5 GA
solutions were randomly selected from the current population and fed independently to the
AugNN. Using each of these solutions as a starting point, the AugNN ran until it located 1%
of solutions. If one of these solutions offered improvement over those located thus far, that
solution was then added into the next GA generation.
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Table 2 Results of AugNN, GA and NeuroGenetic on 270 benchmark problems, 5,000 unique solutions

Problem Percent Gap from LP-relaxed Average time taken per problem

set solution in seconds

AugNN GA NeuroGenetic AugNN GA NeuroGenetic

100 × 5 0.96 0.71 0.68 10.39 1.82 2.31

100 × 10 1.75 1.20 1.16 17.86 2.25 3.25

100 × 30 2.94 2.31 2.13 50.82 3.95 6.32

250 × 5 0.36 0.27 0.24 27.50 3.26 4.54

250 × 10 0.78 0.59 0.52 43.89 4.16 6.65

250 × 30 1.65 1.19 1.11 132.84 7.19 12.31

500 × 5 0.19 0.18 0.14 88.43 5.44 9.96

500 × 10 0.34 0.36 0.33 151.62 6.65 13.98

500 × 30 0.97 0.86 0.80 453.01 12.92 34.71

Average 1.10 0.85 0.80 108.48 5.29 10.45

Table 3 Results of AugNN, GA and NeuroGenetic on 270 benchmark problems, 10,000 unique solutions

Problem Percent Gap from LP-relaxed Average time taken per problem

set solution in seconds

AugNN GA NeuroGenetic AugNN GA NeuroGenetic

100 × 5 0.93 0.66 0.61 25.25 4.76 13.31

100 × 10 1.70 1.15 1.03 33.86 4.86 13.71

100 × 30 2.92 1.92 1.77 105.32 8.46 15.31

250 × 5 0.34 0.23 0.18 58.36 8.06 30.91

250 × 10 0.72 0.42 0.36 85.48 9.10 32.06

250 × 30 1.61 0.84 0.73 230.24 16.29 35.46

500 × 5 0.18 0.09 0.07 170.23 12.05 57.55

500 × 10 0.31 0.20 0.17 311.12 14.56 61.42

500 × 30 0.95 0.42 0.39 893.81 27.43 69.36

Average 1.08 0.66 0.59 212.63 11.73 36.56

Tables 2 and 3 summarize the results for the two sets of experiments. We observe that
the AugNN was the slowest of the three approaches. The GA was the quickest technique
and the NeuroGenetic approach was a little bit slower than GA but considerably faster than
AugNN. This is not surprising given that 95% of NG iterations were GA iterations. In the
knapsack literature, the quality of the solution is commonly measured as the percentage
gap from the LP-relaxed solution. A lower gap is a sign of a better solution. For the first
set of experiments (5,000 unique solutions) the AugNN, GA and NG approaches achieved
average gaps of 1.10, 0.85 and 0.80 percent respectively. The average time taken per problem
by the NG approach was 10.45 seconds compared to GA’s 5.29 seconds. For each of the
three subsets of problems, the NeuroGenetic approach showed improvement and dominated
both the AugNN and the GA approaches. For the second set of experiments (10,000 unique
solutions), AugNN averaged a gap of 1.08 percent, GA reduced the gap from 0.85 to 0.66
while NG reduced the gap from 0.80 to 0.59. Again the NG approach offered improved
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Table 4 Test of significance of
positive difference between NG
and GA solutions for 5,000
unique solutions

asignificant at 1%

bsignificant at 5%

Problem Wilcoxon- p-value

set Signed-Ranks test

z-value

100 × 5 −0.339 0.367

100 × 10 −1.008 0.157

100 × 30 −3.67 0.000121a

250 × 5 −2.27 0.012b

250 × 10 −4.77 0.00000091a

250 × 30 −4.73 0.0000011a

500 × 5 −4.56 0.000025a

500 × 10 −4.78 0.00000087a

500 × 30 −4.78 0.00000087a

Overall −12.0756 7.1 × 10−34

Table 5 Test of significance of
positive difference between NG
and GA 10,000 unique solutions

asignificant at 1%

Problem Wilcoxon- p-value

set Signed-Ranks test

z-value

100 × 5 −3.98 0.0000345a

100 × 10 −4.22 0.0000124a

100 × 30 −3.70 0.000107a

250 × 5 −4.30 0.000008597a

250 × 10 −4.45 0.00000423a

250 × 30 −4.75 0.00000101a

500 × 5 −4.43 0.00000466a

500 × 10 −3.98 0.0000345a

500 × 30 −4.20 0.0000136a

Overall −12.89 2.7 × 10−38

results over the other techniques while requiring some extra processing time—36.56 seconds
per problem vs. 11.73 seconds per problem for the GA.

We also performed statistical tests of significance to test if the NeuroGenetic approach
provided better solutions than GA. We performed a one-tailed Wilcoxon Signed-Ranks test
(Demsar 2006) on each of the nine sets of 30 problems and also on the entire 270 problems.
Tables 4 and 5 provide the Wilcoxon Signed-Ranks test z-values and their corresponding
p-values for each dataset for 5,000 and 10,000 unique solutions respectively. For the results
of 5,000 unique solutions, on six of nine datasets, NeuroGenetic performed better than GA
at the 1% significance level, on one dataset it performed better at the 5% significance level
and on two datasets, the improvement was not significant at 10% level. For 10,000 unique
solutions, on all nine datasets the NeuroGenetic approach performed significantly better than
GA at the 1% level. For all 270 problems, the significance level was extremely high—the
p-value being 7.1 × 10−34 for the 5,000 solutions and 2.73 × 10−38 for 10,000 solutions.

For many optimization problems, the best solutions are given by Genetic Algorithms. For
the knapsack problem for example, the results using Genetic Algorithms (Chu and Beasley
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1998) dominate all other results. For the resource-constrained project scheduling problems,
Kolisch and Hartmann (2006) show that Genetic Algorithms dominate all other metaheuris-
tic approaches. In this paper, we show that in certain situations a combination of genetic
algorithms with AugNNs provides an even more powerful solution alternative than GAs
alone.

5 Summary and conclusions

In an attempt to solve various discrete optimization problems that appear in a variety of
disciplines, heuristic and metaheuristic approaches are commonly employed since exact so-
lutions for larger problems are hard to find due to their NP-hard nature. One major challenge
in using metaheuristics is that they often struggle in their development of a good balance be-
tween global search and local search. In this paper, we propose a hybrid approach called
the NeuroGenetic approach in which the GA approach and the AugNN approach are inter-
leaved, i.e., two approaches alternate the iterations and try to improve upon the previous best
iteration. Since the GA and the AugNN approaches are, in general, strong in global search
and local search respectively, the interleaved approach grants the advantages of both global
and local search mechanisms hopefully helping to overcome this balancing problem that
is seen with most other techniques. The transition from one approach to another, however,
is not trivial, as it requires a switching (translation) of the encoding schemes used by the
two approaches. For the interleaved approach to be feasible, this transition must be possi-
ble in both directions. In this paper, we describe the encoding schemes of both the GA and
the AugNN approaches and explain with the help of examples, proposed algorithms for the
translation of two types of encoding schemes. We also discuss some limitations of the NG
technique, in terms of the potential difficulty of being able to switch from GA encoding to
AugNN encoding, if the heuristic being used with the AugNN procedure does not rely on a
static ordered vector of some problem parameter.

The proposed hybrid approach was tested on 270 benchmark multidimensional knapsack
problems of size ranging from 100 × 5 to 500 × 30. Results on two different sets of exper-
iments demonstrate that the NeuroGenetic approach is able to improve upon the solution
quality of either the GA or the AugNN alone. And in doing so, the NeuroGenetic approach
requires some extra processing time. Since this is a new metaheuristic, there are many op-
portunities for future work. An obvious opportunity is to see if the proposed approach is
effective on other types of combinatorial optimization problems such as scheduling, the
traveling salesman problem, the bin-packing problem etc. Also, in this paper, we discussed
only two encoding schemes. Future research may focus on other types of encoding schemes
or on discovering more effective weight-determination strategies.
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