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Abstract The augmented-neural-network (AugNN) approach has been applied lately to
some NP-Hard combinatorial problems, such as task scheduling, open-shop scheduling
and resource-constraint project scheduling. In this approach the problem of search in the
solution-space is transformed to a search in a weight-matrix space, much like in a neural-
network approach. Some weight adjustment strategies are then used to converge to a good set
of weights for a locally optimal solution. While empirical results have demonstrated the ef-
fectiveness of the AugNN approach vis-a-vis a few other metaheuristics, little theoretical in-
sights exist which justify this approach and explain the effectiveness thereof. This paper pro-
vides some theoretical insights and justification for the AugNN approach through some basic
theorems and also describes the algorithm and the formulation with the help of examples.

Keywords Combinatorial optimization - Neural networks - Metaheuristics - Local search

1 Introduction

A number of intelligent metaheuristic approaches have emerged lately for solving various
NP-Hard combinatorial problems. In just the past few years, iterated greedy algorithm (Ruiz
and Stutzle 2006), scatter search (Marti et al. 2006; Pacheco 2005), electromagnetism-like
algorithms (Birbil and Fang 2003; Debels et al. 2006), Augmented Neural Networks (Agar-
wal et al. 2003), GRASP (Pitsoulis and Resende 2001) and RAMP (Rego 2005) have been
proposed and applied to various combinatorial optimization problems. Other metaheuris-
tics such as variable neighborhood search (Ribeiro and Souza 2002), memetic algorithms
(Cheng and Gen 1997), ant colony optimization (Dorigo et al. 1999), iterated local search
(Stutzle 1998), were proposed in the nineties. Tabu search (Glover 1989), genetic algorithms
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(Goldberg 1989) and simulated annealing (Kirkpatrick et al. 1983) have established them-
selves as metaheuristics for some time now. Refinement strategies such as path-relinking
have also been explored within the established metaheuristic frameworks (Diaz and Fernéan-
dez 2006; Reeves and Yamada 1998).

At the most fundamental level, there are significant commonalities amongst all meta-
heuristics. They all, essentially, attempt to iteratively improve upon a set of feasible solu-
tions using appropriate local moves or perturbation. The nature of moves or perturbation
varies from one technique to another. For a given metaheuristic, we find in the literature,
empirical evidence of their effectiveness in solving certain types of problems. Little theoret-
ical insights, however, are known for the effectiveness of metaheuristics (Ruiz and Stutzle
2006; Kolisch and Hartmann 2006). In many cases, significant randomness is built in the
way the perturbation takes place. If perturbations are completely random then a metaheuris-
tic is akin to random search or a black-box approach. Wolpert and Macready (1997) argue
that no black-box algorithm can dominate another over the set of all problems for a given
class of problems and that the performance of any black-box algorithm is no better than
a random search. In order for an algorithm to dominate another, some mechanism to mit-
igate randomness must, therefore, be built into the search mechanism. In tabu search, for
example, randomness is alleviated through the use of memory lists. Attempts have also been
made to incorporate domain/problem specific knowledge as a means to mitigate randomness
in search. For example, in genetic algorithms, repair operators that utilize domain-specific
knowledge to impose feasibility are designed to bias the search towards good solutions in-
stead of random solutions (Chu and Beasley 1998). The use of heuristics to find initial so-
lutions is also considered a step towards applying domain and problem-specific knowledge,
thus reducing randomness.

This paper focuses on one such metaheuristic—augmented-neural-networks (AugNN), in
which incorporating domain-specific knowledge is integral to the approach. The approach is
a hybrid of neural-networks and the heuristic approach. In this approach, a weight matrix of
appropriate size is assumed and the problem of search in the solution space is transformed to
a problem of search for the best weight matrix in the weight space. The effectiveness of this
approach has been empirically demonstrated in recent years on the task-scheduling problem
(Agarwal et al. 2006, 2003), the open-shop scheduling problem (Colak and Agarwal 2005)
and the resource-constrained project scheduling problem (Colak et al. 2006). However, lit-
tle theoretical justification for the approach has been provided. In this paper we provide
some theoretical insights into the AugNN approach. We first explain the approach with the
help of two generic examples and then discuss the theoretical issues and develop theorems
and their corollaries to provide the theoretical justification for the AugNN approach as a
metaheuristic.

2 The AugNN approach explained

As pointed out before, the AugNN approach is a hybrid of the neural-network approach and
the heuristic approach. It is well known that heuristics usually generate reasonably good
approximate solutions fast to most NP-Hard problems. In the AugNN approach, a heuristic
solution is used as a proxy for a good neighborhood of solutions. Iterative local search
around the heuristic solution attempts to find a locally optimal point. In this approach, a
given problem is framed as a neural network of non-linear functions (input, transfer and
output) in such a way that (i) the constraints of the problem and (ii) a heuristic are embedded
in this network of functions. Domain and problem specific knowledge are thus embedded
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in the network. These non-linear functions include weights just like in a traditional neural
network. A problem’s parameters can be fed to the network as input and the network of
functions produces as output the solution and the objective function value of the problem.
We add memory to each processing element that holds the problem parameters. An example
of an AugNN representation as a neural network is described in Sect. 5. The first pass or
iteration produces the heuristic solution, which of course depends on the chosen heuristic,
while subsequent iterations produce new solutions. New solutions are a result of perturbation
of weights. The weight-adjustment strategy is designed so as to bias the search towards
optimal/near-optimal local solution. In this and the next two sections, we explain and discuss
the issues related to the role of weights in determining the solutions.

When applying metaheuristics, in general, one or more initial feasible solutions are first
obtained either randomly or with the help of some good heuristics; improvements to these
initial solutions are then sought iteratively through some perturbation mechanism. For ex-
ample, in genetic algorithms, the initial population of chromosomes represents some initial
solutions. Subsequent populations contain solutions obtained by perturbing the initial solu-
tions using various crossover, mutation and repair operators. Some crossover schemes tend
to perform better than others. Those that can capitalize on some domain or problem-specific
knowledge would tend to outperform those more random in nature.

In the AugNN approach, the initial solution, as pointed out before, is found using a good
heuristic. A heuristic generally uses some problem-specific parameter, hereafter heuristic
parameter, such as the constraint coefficients or the objective function coefficients or some
combination thereof, to prioritize the decision variables or to prioritize something that helps
determine the decision variables. The perturbation mechanism, in the AugNN approach,
utilizes a weight matrix. The heuristic parameter is weighted with the weight matrix and the
same heuristic is then applied to the weighted heuristic parameter to generate a new solution.
The weight matrix is modified at the end of each iteration and the heuristic applied again, to
obtain new solutions in each iteration.

For example, consider the following one-dimensional knapsack problem:

Max E CiX;

ieN
S.t. E aix;i < b,
ieN
x; =1, ifitem i is selected, O otherwise

where N represents the set of all items and |N| = n; ¢; is the value of item i; a; is the size
of item i and b is the capacity of the knapsack. Suppose we use the heuristic HVSR in
which—the item with the “Highest Value-to-Size-Ratio (c;/a;)” is placed next in the knap-
sack if it can fit in the knapsack without violating the capacity constraint. In the AugNN
approach, we introduce a weight vector w. For this example, since the heuristic parameter
is a vector (c;/a;) of n elements, w will also be a vector of n elements. Had the heuristic
parameter been a matrix, we would need a weight matrix. Initially all elements of w are
assumed to be 1, and w;.(c;/a;) is computed and the heuristic HVSR is applied once, giving
us an initial solution. Let us call the list of items sorted in non-increasing order based on the
ratio w;.(c;/a;), a permutation of items. According to the HVSR heuristic, items from the
top of this permutation are placed in the knapsack until the knapsack is full. Clearly, if this
permutation had been different, especially at the top, the solution would likely be different.
See the numerical example in the Appendix. To find the next solution, we modify each of
the weight vector elements as follows: If Rand() < 0.5 then w; = w; + (Rand.()«.e.wy;),
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else w; = w; — (Rand().«.e.w;), where « is the search coefficient, e is the error term, i.e.
the deviation of the current solution to a lower (or upper bound) solution for a minimiza-
tion (maximization) problem. We then update the elements of weighted parameter vector
w;.(c;/a;) and apply the same HVRS heuristic again. If the new permutation of items (based
on updated w;.(c; /a;)) is different from the one based on the previous w;.(c;/a;), then a dif-
ferent solution is likely to be obtained. Weights are modified again and the same heuristic
applied using updated weighted ratio w;.(c;/a;) producing yet another solution. Likewise,
several iterations can be executed and the best solution saved.

In this approach, as can be observed from the above example, the search for the best
solution has been transformed into the search for the best weight vector, for a particular
heuristic. Suppose that we had used a different heuristic called HV in which the item with
the “Highest Value” (c¢;) is placed next as long as the knapsack capacity constraint is not
violated. For the initial solution, this heuristic would give a different permutation of items,
compared to the HVSR heuristic and consequently a different initial solution. Subsequent
permutations will be obtained using the sorting order based on updated w;.c; vector. The
AugNN approach will then try to find the best weight vector, which in conjunction with the
HYV heuristic, gives the best solution. Note that a perturbation in the weight vector gives rise
to a perturbation in the permutation of items which in turn produces a new solution. If the
perturbation (in the weights, and consequently on the permutation) is small, the new solution
can be considered a solution in the local neighborhood of the old solution. The weight vector,
thus provides a mechanism for perturbation. The advantage of using the weight vector (in
conjunction with a heuristic) as a means of perturbation is that using this mechanism, a
feasible solution is always guaranteed because heuristics are designed to always generate
feasible solutions.

Let us consider a different problem, the Traveling Salesman Problem (TSP):

Min E E CijXij
ieN jeN

S.t. Zx,-j =1

ieN

Z)Cij =1

JjeN

> Y xj<IK|—1 forallKCN

ieK jekK

where N is the set of all city nodes; | N | = n; ¢;; is the cost (or distance) to travel from node i
to node j; x;; represents the edge from node i to node j; x;; is 1 if the edge is on the tour and
0 otherwise. Many heuristics have been proposed in the literature for finding approximate
solution to this problem. For purposes of explaining the AugNN approach, let us consider a
simple heuristic called NNN, or “Nearest-Neighbor Next” in which the closest unvisited city
is visited next till the tour is complete. To apply the AugNN approach, we introduce a weight
matrix w. Since the heuristic parameter is the matrix ¢;; of size n x n, the weight matrix
will also be of size n x n. Initially, w is set as an identity matrix and w;;.c;; is computed.
The heuristic NNN is applied using w;;.c;; to obtain the initial solution. We can call a TSP
solution a permutation of city nodes. Subsequent solutions are obtained by perturbing the
w matrix and updating the weighted distances between nodes (w;;.c;;) and applying the
same NNN heuristic. The application of the NNN heuristic will presumably give a different
permutation of city nodes each time the weight matrix is perturbed. Once again, the problem
of finding the best tour has been transformed to the problem of searching for the best set of
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weights which in conjunction with a given heuristic will attempt to produce the optimal
solution.

It should be observed that heuristics, in general, use some problem-specific parameter(s)
to establish a priority order (or permutation) of some aspect of the problem, which guides the
solution procedure. For example, in the knapsack problem, the problem-specific parameters
were ¢; or (¢;/a;) and the items themselves were prioritized. In the TSP, the NNN heuristic
gave us a permutation of city nodes using the problem-specific parameter of ¢;;. In the
bin-packing problem, for example, items to be added to bins are prioritized based on the
size of the item, therefore the item size becomes the problem-specific parameter and items
themselves are permuted.

We will now try to generalize the AugNN procedure. Suppose for a given problem and for
a given heuristic o, a certain problem-specific parameter Y is used to establish the priority
order of whatever it is that guides the solution procedure. For example, for the knapsack
problem if we are using the HV heuristic, o will be the HV heuristic, T will be the vector
of elements ¢; and permutation is of the items themselves. For the HVSR heuristic, o will
be the HVSR heuristic, T will be the vector of elements c¢; /a;, and again, permutation will
be of the items. For the TSP, for the NNN heuristic, o is NNN, T is the matrix of elements
¢;j and permutation is of city nodes. The general AugNN approach is as follows:

. Choose an appropriate heuristic o and identify the heuristic parameter(s) Y.
. Establish an identity weight matrix of size commensurate with Y.
. Compute weighted parameters (w.Y).
. Repeat
4.1 Generate a solution using the heuristic o using the weighted parameters (w.Y).
4.2 Capture the best solution so far.
4.3 Modify the weights using a weight adjustment strategy.
4.4 Update weighted input parameters w.Y .
Until termination criteria met.
5. Display the best solution so far.

AW =

We raise the following theoretical questions—Is this approach of transforming the prob-
lem of search in the solution space to a problem of search in the weight space justified or
not? If it is justified, what search strategies can be employed, what is the computational
complexity of the approach, what advantages, if any, does this approach have over other ap-
proaches which focus on search in the solution space? In the next section we provide some
theoretical justification for this approach and later discuss the subsequent issues.

3 Theoretical justification

In this section we first describe the notation and discuss the types of problems and types
of heuristics that we are interested in addressing. We then develop theorems and corollaries
and make observations which will justify this approach and help us design the best search
strategy.

3.1 Notation and groundwork

In this paper, we are interested in integer-linear programming problems where the search
space for the decision variables is combinatorial in nature. Examples include the travel-
ing salesman problem, the knapsack problem, the bin-packing problem, various scheduling
problems etc. An optimization problem p of this type can be expressed as p : ® = f(x)
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s.t. ¥ where © is the objective function, a function of x; i represent a set of constraints.
Non-linear or non-integer linear programming problems are not considered. Assume that
the optimal solution to this problem is ©,,;.

Let a deterministic heuristic o solve p to an approximate solution ®, . Here we are
interested in heuristics which make an attempt to find the best possible solution. Heuristics
which intentionally terminate before any constraint is violated are not considered. We are
also assuming that these heuristics work by prioritizing some aspect of the problem using
some problem-specific parameter(s).

Let n be the length of the problem. For example if p is the knapsack problem n would
represent the number of items being considered for the knapsack, x would be the vector of
values of items. The constraint set ¥ would be the various capacity constraints. For the TSP,
n would be the number of city nodes, x would be the matrix of distance (or cost) between the
city nodes and ¢ would be that all nodes must be visited at least once. The heuristic o works
with some problem-specific parameter(s) Y. Using Y, o produces a permutation ¢ (Y, ) of
some aspect of the problem. For example, for the knapsack problem, for the HV heuristic T
is the ¢; vector and ¢ (Y, ) is a permutation of items with non-increasing values of c;.

We now propose and discuss a theorem which establishes the relationship between the
weight matrix w, the optimal solution ®,,, of the problem p and the heuristic o.

3.2 Theorems

For the purpose of Theorem 1, without loss of generality, we will assume that T and w
are matrices of single row (or column)—in other words, vectors. This assumption is made
strictly for the ease of exposition of the proof and in no way affects the generality of the
theorem when Y and w are matrices of higher dimensions. We also assume that all elements
of Y are positive.

Theorem 1 Given an integer linear optimization problem, p : ©® = f(x) s.t. ¥ and a deter-
ministic heuristic o which uses a problem-specific parameter vector Y of length m to find
the best possible solution of p, there exists a weight vector w € " such that the applica-
tion of the heuristic o using the weighted parameter vector (w.Y") can produce the optimal
solution © ,p, of p.

Proof of Theorem 1 Note that the application of the heuristic o generates a permutation (or
priority order) of some aspect of the problem which we will call the permutation of inter-
est, which guides the solution. This ordering is based on some problem-specific parameter.
We are assuming that one such permutation of interest results in the optimal solution. This
assumption is valid because if one knew the optimal solution, a permutation corresponding
to that solution can be generated. For example, if the optimal solution to a given knapsack
problem is known then one permutation of interest that gives the optimal solution will be
the list of all items in the knapsack (in any order) followed by the list of all items not in the
knapsack (in any order).

Let ¢ (Y, ) represent the permutation of interest resulting from the use of the heuristic o
based on the problem-specific parameter Y. Let the permutation £(Y,,) be the one that
leads to a potentially optimal solution ®,,, to the problem p. Let {(Y,,;,) be any arbitrary
permutation of interest. Let £ (Y)”) be the permutation of interest generated using the heuris-
tic o using weighted parameter. If it can be shown that there exists a weight vector w € K™,
such that the permutation of interest £ (Y’) is identical to any arbitrary permutation £ (Y)
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of p, then it can be argued that ¢ (Y,,;) could be {(Y,,,) and that therefore a weight vector

w € RN exists for generating ¢(7,,,), thus completing the proof.

Let ;(Tarb) = ( arb? arb’ e arb)
Let the heuristic parameter Values corresponding to (t},, t2,, ..., t")be (x) ,, x2,, ...,

arb)
Assume that the heuristic o prioritizes items in non-increasing order of parameter values.
So, if there is a w = (w', w?, . ’”) such that w'. x; b > w?. xgrb > ... >w".x),, then o
will prioritize the items in the order (z) " ). We show that a such weight vector

w can be constructed as follow:

wit! x

Tarbs arb’ o arb

i+l

f”r” +1fori=m-—1,...,1.

arh

Such a weight vector will ensure that w' x b > w?. xarb > >whal,.
This completes the proof. O

Let w" =1 and let w' =

Note that, even though the theorem was stated and proven in terms of a vector of Y and
w, that if T and w were matrices, the spirit of the theorem would still hold. This theorem,
thus, provides the justification for searching for the best set of weights in the weight space,
because all potentially optimal points are reachable through this search mechanism. In the
next theorem we prove that there exist infinite weight vectors (or matrices) that can yield the
permutation that leads to the potentially optimal solution.

Theorem 2 Given an integer linear optimization problem, p : ® = f(x) s.t. ¥ and a deter-
ministic heuristic o which uses a problem-specific parameter vector Y of length m to find
the best possible solution of p, there exists a set Q2 of weight vectors w € W" such that the
application of the heuristic o using the weighted parameter vector (w.Y') can produce the
optimal solution ©,, of p and that |2| =

. i+1 i+l
Proof of Theorem 2 In the proof of Theorem 1, substitute w' = w—‘”” + 1 with w' =

arb
r+1 !+1

—‘”” + a, where a is an arbitrary positive number. Since there can be an infinite number
urb

of possible values of a, there are an infinite number of potential weight vectors w that, in
conjunction with a heuristic will generate an optimal solution. This completes the proof. [J

It was important to first establish the existence of at least one such weight vector to
justify searching for the ideal weight vector as a means of finding the optimal solution to
the original problem. Theorem 2 suggests that the search is not just limited to one optimal
weight vector but one of an infinite number of such vectors that will give us the optimal
solution to the problem. Clearly, the likelihood of searching for one from an infinite number
of such vectors is far better than of searching one of only one such vector. Theorem 2, thus,
provides the encouragement to work with the weight search.

Corollary of Theorem 2 Given an integer linear optimization problem, p : ® = f(x) s.t.
Y and a deterministic heuristic o which uses a problem-specific parameter vector Y of
length m to find the best possible solution of p, then for each solution n of p, there exists
a set Q of weight vectors w € X" such that the application of the heuristic o using the
weighted parameter vector (w.Y') can produce 1 of the problem p and that |Q2| =

In plain English, this corollary states that for any solution to the original problem, there
exist infinite number of weight-vectors that can produce the permutation necessary for ob-
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taining that solution. The only difference between this corollary and Theorem 2 is that in-
stead of proving that there exists a set of weights that gives the optimal solution, that there
exists a set of weights for any solution of the problem. The proof for this corollary is actually
contained in the proof for Theorem 1. Since in Theorem 1, we show that a weight vector
exists such that (YY) = ¢(Yum). Since ¢ (Y,) is essentially any solution 7, the corollary
is proved.

4 Convergence and other issues

Having established theoretically that there exists a weight vector that in conjunction with a
given heuristic can generate an optimal solution, the next question is can the iterative mech-
anism of the AugNN approach converge to such a weight vector. Given that there are an
infinite number of weight vectors for every possible solution, including the optimal solu-
tions, guaranteeing the search for the optimal weight vector in finite number of iterations
would not be possible. The AugNN approach is a local search approach, which attempts to
find an improved solution in the local neighborhood which is anchored by a given heuristic.
Given that an optimal weight vector cannot theoretically be found in finite number of iter-
ations, the next best thing to do is to suggest strategies on how to bias the search quickly
towards a good weight vector. We now discuss some search strategies.

4.1 Search strategies

In Sect. 2, we had discussed a specific weight modification strategy—if Rand() < 0.5 then
w; = w; + (Rand().c.w;) else w; = w; — (Rand().«.w;); where Rand() is a random number
between 0 and 1 and « is a search coefficient. By controlling the magnitude of «, we can
control the extent of weight modification. Several variations to this specific strategy are
possible. We will first give a general strategy here—assuming k is the iteration number and
e, the error in iteration k, defined as the difference between the obtained solution value in
iteration k and a lower bound estimate (for minimization problems) for the problem, we note
that:

Wir1 = f(wg, o, ) (1
AW = Wiy — Wg. 2)
Aw X o 3)
Aw X e “4)

Equation (3) suggest that a higher value of « provides a higher perturbation. We develop a
series of search strategies which revolve around the search coefficient «r.

Strategy 1 (Annealing schedule) A higher o during the initial stages of search and a grad-
ually reducing o at later stages of search biases the search towards global optimal.

While a small « is good for searching a local neighborhood, a large « helps in escaping a
local valley in the search space, thus allowing the search for the global optimal. The under-
lying idea of larger initial moves followed by smaller moves is not new as it has been used
in simulated annealing technique in the past (Kirkpatrick et al. 1983). With respect to «, the
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annealing idea has been used in weight modification techniques in traditional neural net-
works as well (Mehrotra et al. 1997). We reiterate that such an annealing schedule is very
beneficial in AugNN search for biasing the search towards the global optimal.

How small can the small value of @ be and how high can the high value of « be? If it is
too small, the weights may not be affected enough to make a dent in the permutation £ (Y”).
To better understand the issue of magnitude of «, we give a corollary of Theorem 2 and then
make two observations, which will guide us in selecting the best magnitudes of «.

Existence of infinite number of weight vectors for each solution (Corollary) poses another
problem. How to avoid the weight vectors that will produce the same solution again and
again, for otherwise, we will be wasting a lot of CPU cycles? From this corollary, follows
the following observation:

Observation 1 If the vector difference between two weight vectors is infinitesimally small,
the chosen heuristic o in conjunction with these two weight vectors will generate the same
permutation of interest, thereby giving the same solution to the problem p.

The Corollary and Observation 1 have several implications for selecting the appropriate
value of «r. Observation 1 suggests that we should be careful in setting the rate of change of w
so that we are not generating the same solution too frequently because it is possible for many
sets of w to produce the same solution. It is difficult to make any theoretical suggestions
about the minimum magnitude of « because a lot depends on the specific problem and the
relative magnitudes of the heuristic parameters. Some experimentation is necessary to fix
the lower bound for « to ensure that duplicate solutions are not generated too often. So the
next question is how high of a value can o assume. Observation 2 will help us in this regard.

Observation 2 The value of o should be such that the magnitude of Aw is of a lower order
of magnitude than the values of the elements of w.

If the order of magnitude of the value of Aw is equal or higher than the value of the
elements of w, the weighted parameter value would be too distorted and the next iterative
solution would not be in the same neighborhood as the current iteration’s solution. In theory,
of course, any order of magnitude of Aw could lead to the optimal value of the original
problem, but it is less likely for large Aw to converge to any local optimal solution.

Strategy 2 (Dynamic annealing schedule) Go through several cycles of the annealing
schedule of Strategy 1.

Cycles of high o followed by gradually decreasing « are repeated a number of times to
bias the search towards a global optimal. The timing as to when to repeat a cycle can be
triggered dynamically by watching the behavior of obtained solutions in recent iterations. If
the obtained solution is not varying, it is time to start a new cycle to explore a new neigh-
borhood. This dynamism includes backtracking of weights, which will be explained next.

Supplemental strategies
We now discuss some strategies which supplement Strategies 1 and 2.
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Backtracking Sometimes the weights have a tendency to lose track if left unleashed. The
result could be a series of poor solutions with no signs of reaching a good neighborhood.
The search starts resembling more like a blind search in the dark. Such situations can be
avoided by keeping track of the obtained solutions. If a series of poor solutions is obtained,
the weights can be restored to the current best or the second best set of weights. Of course
application of this strategy requires that we maintain a few good sets of weights and also,
that we keep track of the last few solutions and determine if they are quite far from the best
solution obtained so far. The disadvantage of backtracking is that we may be over searching
the same neighborhoods explored earlier. An alternative to backtracking would be use of
multiple heuristics explained in the next sub-section.

Use of multiple heuristics We assume that a heuristic solution is closer to the optimal
solution than a random solution and therefore, use of a heuristic solution as the starting
solution is itself a strategy for biasing the search towards the bottom of a valley (hill) in
the search space for a minimization (maximization) problem. Use of different heuristics
essentially allows the search access to multiple good valleys (hills) thereby increasing the
probability of hitting upon the globally best valley (hill). We note that any metaheuristic
search technique can employ a heuristic solution as the initial solution. Use of multiple
heuristics as a strategy to bias a metaheuristic search towards near-optimal solutions should
not be considered as something unique to the AugNN approach as it can be used with any
metaheuristic approach. In AugNN, the implementation of this approach is facilitated by the
fact that the heuristics are built into the functions of the network.

Combining deterministic and stochastic strategy In some optimization problems re-
searchers have devised some deterministic local-search strategies. For example for the trav-
eling salesman problem we have the 2-OPT or 3-OPT strategies (Lin and Kernighan 1973)
and for PERT-type scheduling problems such as task scheduling or project scheduling we
have the double justification strategies (Valls et al. 2005). If the computational complexity
of these deterministic local-search strategies does not exceed that of the heuristic, then use
of these search strategies will bias the search towards optimal or near-optimal solutions,
without adding to the computational complexity. If the complexity exceeds that of the base
heuristic then such strategies may be applied sporadically or some approximations of the
local-search strategies may be used. For example the exhaustive 3-OPT routine has O (1°)
complexity which makes it difficult to apply but O (n) approximations of 3-OPT exist (Hels-
gaun 2000) which makes use of this strategy very favorable. This strategy is geared more
towards biasing the search towards local optima. Again, the idea of applying a deterministic
local-search strategy is not something new to the AugNN approach; any metaheuristic can
benefit from this strategy.

Using the search strategies outlined in this section, the search can be biased towards local
and global optima.

4.2 Computational complexity

We observe that in the AugNN approach, obtaining each new solution requires the ap-
plication of the heuristic. So if the computational complexity of a particular heuristic is
say O(n™), then the complexity for the AugNN approach would be k.O(n™), where k is
the number of iterations. Compared to perturbation mechanisms of other metaheuristics,
AugNN’s perturbation mechanism has a higher computational complexity. For example in
genetic algorithms, a perturbation consists of rearranging the genes of two parent chromo-
somes to produce a child chromosome. Such perturbations can be achieved in O(n) time,
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irrespective of the complexity of a heuristic for that problem. In some genetic algorithms,
one has to ensure the feasibility of the new solution and fix any the solution if it is infeasible.
Ensuring feasibility may require extra computational effort, although the extra effort is likely
to be less than the effort required to apply the heuristic each time. To justify the use of the
AugNN approach, it must have some other advantages with respect to other metaheuristics
to justify its use from a practical point of view.

4.3 Advantages of AugNN vs. other metaheuristic techniques

What advantages does the AugNN approach have over other metaheuristics? We have al-
ready noted that in terms of computational complexity, this approach actually has a disad-
vantage over other approaches because the mechanism to generate a new solution requires a
complete run of the heuristic. So unless there are some overriding advantages, this approach
may not be very practical. We point out three advantages. First, this approach offers a better
mechanism for local search than other techniques. The second advantage is the simplicity
and flexibility of search strategies. The third advantage is that feasibility is guaranteed for
each new solution.

4.3.1 Local search advantage

Using the AugNN approach, by controlling the value of «, a local neighborhood of a given
solution can be searched quite thoroughly. This is so because by slightly modifying the prob-
lem parameters and using the same heuristic, the new solution is still within a close neigh-
borhood of the original solution. In GA, by contrast, even if one pair of genes is swapped,
there is no guarantee that the resulting chromosome represents a solution in the same neigh-
borhood. We illustrate this with the help of a TSP example of Fig. 1.

Let’s suppose a 6-city TSP as shown in Fig. 1 is given. Let’s say the NNN algorithm
gives the solution in Fig. 1a and let’s also assume that the tour of Fig. 1b is the optimal
tour. If we use a genetic algorithm chromosome to represent the solution in Fig. 1a we get
a chromosome like 1-2-5-6-3—4. In genetic algorithms, a single swap between two nodes
may be regarded as a local-move. In making the swap there may be no consideration of the
relative distances between the city nodes. So, a swap between nodes 2 and 6 is just as likely
as a swap between 3 and 4, yet, as is clear from the picture, a swap of cities 2 and 6 gives

(2) (b) (©)

Fig.1 TSP example
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the tour in Fig. 1c, which is much worse than the tours of Figs. 1a or 1b. With the AugNN
approach, with a slight modification of the distances between cities and the application of
the same NNN heuristic, a move from Fig. 1a to 1b is much more likely than a move from
Fig. lato Ic.

Due to this local search advantage, the AugNN approach wastes far fewer iterations gen-
erating poor solutions compared to other metaheuristics.

4.3.2 Simplicity and flexibility advantage

Since most of the search strategies outlined in Sect. 4.2 have to do with the magnitude of «,
various search strategies can be implemented fairly simply and a variety of strategies can be
tested without much coding effort. In contrast, in GA, for example, a new search strategy
comes at the cost of coding a new crossover operator. This advantage also translates to the
advantage of having to deal with only one parameter—the search coefficient.

4.3.3 Feasibility guarantee advantage

In other metaheuristics, each time a move or a perturbation is made, it remains to be deter-
mined whether the move resulted in a feasible solution. If an infeasible solution is obtained,
then repair operators are required to bring the infeasible solution to the feasible region. In
the AugNN approach there is no need for testing for feasibility or the need for a repair op-
erator. This makes implementation that much easier. Some of the computational advantage
that AugNN loses compared to other metaheuristics is regained due to this advantage.

5 Implementation

In Sect. 2 we pointed out that in the AugNN approach, a given problem is framed as a
neural network of non-linear functions (input, transfer and output) in such a way that (i) the
constraints of the problem and (ii) a heuristic are embedded in this network of functions.
We explain the AugNN network representation with the help of a knapsack example. Say
we want to solve an n-item knapsack problem. Let’s suppose the heuristic we adopt is the
HYV heuristic. The network is shown in Fig. 2. It has an input and an output layer of neurons
with one node each. The hidden layer has n nodes, one for each item. The links between the
input node and each of the n hidden nodes have a weight associated with them, much like in
a traditional neural network.

Table 1 shows the input, transfer and output functions and the memory items for the
nodes of the neural network. The input to the hidden nodes is the weight vector element.
The hidden node computes the weighted value w;c; and the output of the hidden layer is
that the node with the highest w;¢; fires a signal, while the other nodes do not fire a signal.
In this way the HV heuristic is embedded in the functions of this network. The input of the
output node is the signal from whichever hidden node fired. The output node computes the
objective function value Zi < Cix; and also determines if there is slack b — Zie v aix; and
sends the same as output. It remembers which items are in the knapsack and what is the
constraint capacity. In this way, the constraints of the problem are embedded in the network.

If the knapsack is full, and if the termination criteria is not met, then the best solution
so far is captured, the weights are modified using some weight adjustment strategy and the
cycle is repeated. As can be seen, the heuristic and the constraints are built into the network
functions. So in each pass only a feasible solution is obtained.
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| Display the best solution |

No

Termination criteria met

Capture best

Output node ;
solution

Node with the highest
weighted value fires.

Block items
in knapsack
from
competing

Modify Weights
Hidden layer —»
nodes

Input node —»

Fig. 2 An AugNN network for solving an n-item knapsack problem

Table 1 Input, transfer and output functions and memory for the AugNN nodes

Input function Transfer function Output function Memory
Input node 1 1 1 -
Hidden nodes w; wj ¢ 1 if highest w; ¢; cj

0 otherwise
Output node i Y ieN CiXis Y ieN CiXis xi, b, a;

b—3jeNaiXi b—3 ienaixi

6 Summary and conclusions

In this paper we develop theoretical justification for the Augmented Neural Network ap-
proach as a metaheuristic for solving various optimization problems. The key element of
this approach is the transformation of the search problem from the solution space of the
given problem to that of a search in the weight space of a temporary weight matrix. We
develop a theorem which establishes the existence of a weight matrix which gives an op-
timal solution to the given problem. The existence of such a weight matrix establishes the
justification for the use of the AugNN approach. The paper then discusses various search
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strategies to bias the search towards a good weight vector. Advantages of the approach are
also discussed and finally an implementation of an AugNN for a knapsack problem is de-
scribed.

The distinguishing feature of this approach is its ability to perform a local-move or
a perturbation through a perturbation in the weight matrix and then applying a chosen
heuristic for the given problem. This approach is still in its nascent stage of develop-
ment and has so far been applied to scheduling problems. More research needs to be
done on other types of optimization problems. Also, this approach holds promise as one
of the partner techniques in a hybrid metaheuristic, especially a global search metaheuris-
tic such as genetic algorithm. A combination of an effective global and an effective local
search technique will of course be an effective search technique for combinatorial prob-
lems.

Appendix

A numerical example Let us consider a one-dimensional knapsack problem as follows:

p: Max Z CiX;

ieN
s.t. E aix; < b,
ieN
x; =1, ifitem i is selected, O otherwise

Let b =15 and let ¢; and g; be as given in Table 2.

The total number of possible subsets of items (feasible or infeasible) is *Cy+>C;+>
Cy+°C34+°C4+°Cs =145+ 10+ 104+ 54 1 = 32. According to Table 3, 21 of these 32
possible subsets are feasible, i.e. subset of items that fit the knapsack capacity of 15. The
best solution is the subset of items 1, 2, 5 with a value of 12.

How AugNN will solve this problem? o :HVSR Y : (c;/a;) = {1.5,0.625,0.428,0.8, 0.5}

Let «, the search coefficient be 0.2

Let the stopping criteria be stop after 4 iterations.

Table 4 shows the weight vector (w), the weighted problem parameter (w.Y), the per-
mutation of items ¢ (Y, ) based on the HVSR heuristic o, and the solution based on those
permutations.

In iteration 1, w is an identity vector. The product of w.Y is basically (c;/a;). In iteration
one, the application of the HVSR heuristic, gives a permutation of 1-4-2-5-3 based on the
non-decreasing value of (c;/a;). This permutation gives the solution of 1, 4, 5 with a value
of 11. In iteration 2, the weight vector has been modified, and updated w.Y is computed.

Table 2 Values (c;) and size

(a;) of items Item # Value (¢;) Size (a;)
1 6 4
2 5 8
3 3 7
4 4 5
5 1 2
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Table 3 All possible solutions of the example problem of Table 2

# Subset Knapsack size Feasible? Obj. func. value
1 Empty 0 Feasible

2 1 4 Feasible 6
3 2 8 Feasible 5
4 3 7 Feasible 3
5 4 5 Feasible 4
6 5 2 Feasible 1
7 1,2 12 Feasible 11
8 1,3 11 Feasible 9
9 1,4 9 Feasible 10
10 1,5 6 Feasible 7
11 2,3 15 Feasible 8
12 2,4 13 Feasible 9
13 2,5 10 Feasible 6
14 3,4 12 Feasible 7
15 3,5 Feasible 4
16 4,5 Feasible 5
17 1,2,3 19

18 1,2,4 17

19 1,2,5 14 Feasible 12
20 1,3,4 16

21 1,3,5 13 Feasible 10
22 1,4,5 11 Feasible 11
23 2,3,4 20

24 2,3,5 17

25 2,4,5 15 Feasible 10
26 3,4,5 14 Feasible 8
27 1,2,3,4 24

28 1,2,3,5 21

29 1,2,4,5 19

30 1,3,4,5 18

31 2,3,4,5 22

32 1,2,3,4,5 26

Based on the updated w.Y, the permutation is 1-3—4—5-2 which gives a solution of 1, 3, 5
with a value of 10. So the best solution so far is 11. In iteration 3, yet another perturbation
of weights occurs, which gives a new weighted heuristic parameter vector w.Y. The new
permutation gives the solution 1, 2, 5 with a value of 12. The next iteration also gives the
solution of 1, 2, 5 although using a different permutation. We see that due to a perturbation
in the weight vector, that w.Y" gets a perturbation, which perturbs the permutation ¢ (Y, ),
which gives a new solution. It is clear that there is a permutation of items ¢(Y,) which
results in one of the optimal solutions. According to Theorem 1 there exists a weight vector

that gives the permutation that gives the optimal solution.
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Table 4 Status of w, (w.Y), (Y4 ) and the solution for four iterations

Iteration w w.Y or w; c;/a; ¢(Yo) Solution Best

from {(Yy) solution

so far

1 {1,1,1,1,1} {1.5,0.625,0.428,0.8,0.5} 1-4-2-5-3 Items: 1,4,5 11
Value =11

2 {0.78, 0.8, 1.3, 0.68, 1.05} {1.17,0.5,0.56,0.54, 0.53} 1-3-4-5-2 Ttems: 1,3,5 11
Value =10

3 {0.624, 0.85, 1.21; 0.58, 1.1} {0.94, 0.53, 0.52, 0.46, 0.55} 1-5-2-3—4 TItems: 1,2,5 12
Value = 12

4 {0.52,0.89, 1.05, 0.6,0.95}  {0.78, 0.56, 0.45, 0.48, 0.47} 1-2-4-5-3 Ttems: 1,2,5 12
Value = 12
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