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Abstract This study proposes, develops and tests a hybrid neural approach (HNA) for 
the resource constrained project scheduling problem. The approach is a hybrid 
of the adaptive-learning approach (ALA) for serial schedule generation and the 
augmented neural network (AugNN) approach for parallel schedule generation. 
Both these approaches are based on the principles of neural networks and are very 
different from Hopfield networks. In the ALA approach, weighted processing 
times are used instead of the original processing times and a learning approach is 
used to adjust weights. In the AugNN approach, traditional neural networks are 
augmented in a manner that allows embedding of domain and problem-specific 
knowledge. The network architecture is problem specific and a set of complex 
neural functions are used to (i) capture the constraints of the problem and (ii) 
apply a priority rule-based heuristic. We further show how forward-backward 
improvement can be integrated within the HNA framework to improve results. We 
empirically test our approach on benchmark problems of size J30, J60 and J120 
from PSPLIB. Our results are extremely competitive with existing techniques 
such as genetic algorithms, simulated annealing, tabu search and sampling. 

Keywords: Project Management, Resource Constrained Project Scheduling, Neural Net­
works, Heuristics 

12.1 Introduction 

The resource-constrained project scheduling problem (RCPSP) is a well-
known NP-Hard scheduling problem (Blazewicz et al (1983)). It is a classical 
problem in operations research with broad applicability in project management 
and production scheduling. It involves minimizing the makespan of a project 
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by scheduling its activities which are subject to precedence and resource con­
straints. The amounts of available resources are fixed and known in advance. 
Resource requirements and processing times for each activity are determin­
istic and also known in advance and preemption of activities is not allowed. 
This problem has received the attention of many researchers for well over four 
decades. One of the recent research focuses in this area has been towards 
developing new metaheuristic approaches using artificial intelligence and/or 
biologically-inspired techniques. For solving this problem, two schedule gen­
eration schemes are commonly used - serial and parallel. In this work, we 
propose, develop and test a new hybrid metaheuristic approach based on the 
principles of neural networks. We use adaptive-learning approach (ALA) for 
serial and augmented-neural-network approach (AugNN) for parallel schedule 
generation scheme. We call our approach the hybrid-neural approach (HNA). 

In the adaptive-learning approach (Agarwal et al (2005)), weighted process­
ing times are used instead of the given processing times. Well-known heuristics 
are applied using these weighted processing times. An intelligent perturbation 
strategy used to adjust the weights allows non-deterministic local search. The 
AugNN approach was first applied to parallel schedule generation in the task-
scheduling problem by Agarwal et al (2003). With suitable modifications, 
the AugNN approach can be applied to the parallel generation scheme for the 
RCPSP. The AugNN approach is quite different from the Hopfield network ap­
proach which has been applied to the traveling-salesman problem (Hopfield and 
Tank (1985) and job-shop scheduling (Sabuncuoglu and Gurgun (1996), Foo 
and Takefuji (1988)). In the AugNN approach, the traditional neural network 
is augmented to allow embedding of domain and problem-specific knowledge. 
The network architecture is designed to be problem specific; instead of the 
standard 3-layered network, it is a p-layered network, where p depends on the 
problem structure. Details will be explained in Section 16.4. Further, in the 
AugNN approach, the input, activation and output functions are complex func­
tions, designed to (i) enforce the problem constraints, and (ii) apply a known 
priority heuristic. The AugNN approach, thus, allows incorporation of domain 
and problem-specific knowledge and affords the advantages of both the heuris­
tic and iterative approaches. In this study, forward-backward improvement 
steps (Tormos and Lova (2001), Vails et al (2005) are also integrated within this 
framework of hybrid-neural approach. 

We implement and test our proposed hybrid-neural approach on some well-
known RCPS benchmark problem instances in the literature. Our results are 
very competitive with those of other techniques. Given that this approach is 
relatively new, it seems to hold a lot of promise; perhaps in future studies, it 
can be used in conjunction with other successful techniques, such as genetic 
algorithms, scatter search etc. to give improved results. 



Resource Constrained Project Scheduling: A Hybrid Neural Approach 299 

The rest of the paper is organized as follows. Section 16.2 presents a literature 
review for the RCPSP. We discuss how ALA is applied to the serial schedule 
generation problem in Section 16.3. The details of AugNN formulation for 
solving the parallel schedule generation for the RCPSP are given in Section 16.4. 
In Section 16.5, computational results are presented and discussed. Finally, 
Section 15.6 provides a summary of the paper and discusses future research 
ideas. 

12.2 Literature review 
The research literature for the RCPSP is quite large. We refer the readers to 

the review papers by Icmeli et al (1993), Ozdamar and Ulusoy (1995), Herroelen 
et al (1998), Brucker et al (1999), Hartmann and Kolisch (2000), Kolisch and 
Padman (2001), Kolisch and Hartmann (2005), 

The various exact methods applied to the RCPSP can be classified into 
three categories: dynamic programming, zero-one programming and implicit 
enumeration with branch and bound. Pritsker et al (1969), Patterson and 
Huber (1974), Patterson and Roth (1976) proposed zero-one programming 
methods. Exact approaches based on implicit enumeration with branch and 
bound have been widely used: Davis and Heidom (1971), Talbot and Patterson 
(1978), Christofides et al (1987), Demeulemeester and Herroelen (1992), De-
meulemeester and Herroelen (1997), Brucker et al (1998), Mingozzi et al 
(1998), Domdorf et al (2000). Blazewicz et al (1983) showed that the RCPSP 
is a generalization of the well-known job-shop-scheduling problem and is NP-
Hard. While exact solution methods are able to solve smaller problems, heuris­
tic and metaheuristic approaches are needed for larger problem instances. 

Priority-rule based heuristics combine one or more priority rules and schedule-
generation schemes (serial, parallel or both) in order to construct one or more 
schedules (Hartmann and Kolisch (2000)). If only one schedule is generated, 
it is called a single pass method and if more than one schedule is generated, it 
is called an X-pass (or multi-pass) method. Some of the well-known priority 
rules are LFT (Latest Finish Time), EST (Earliest Start Time) and MTS (Most 
Total Successor). Although, priority-rule based heuristics are easy to imple­
ment and fast in terms of the computational effort, they are not very effective 
with respect to the average deviation from the optimal solution. A variety of 
priority single-pass methods have been widely used to solve the RCPSP: Davis 
and Patterson (1975), Cooper (1976), Alvares-Valdes and Tamarit (1989), Boc-
tor (1990), Ozdamar and Ulusoy (1994), Kolisch (1996a), Kolisch (1996b), 
Multi-pass methods can be categorized as multi-priority rule methods and 
sampling methods. Multi-priority rule methods combine the schedule gen­
eration scheme with a different priority rule at each iteration: Ulusoy and 
Ozdamar (1989), Boctor (1990), Thomas and Salhi (1998). Sampling methods 
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use a serial generation scheme and a priority rule to obtain the first schedule. 
Then they bias the order obtained by the priority rule by using a random de­
vice: Cooper (1976), Al vares-Valdes and Tamarit (1989), Drexl (1991), Kolisch 
(1996a), Kolisch (1996b), Kolisch and Drexl (1996), Schirmer and Riesenberg 
(1998), Schirmer (2000), 

Many metaheuristic methods, such as genetic algorithms (GA), simulated 
annealing (SA), tabu search (TS), and ant colonies (AC), have been applied to 
solve the RCPSR Metaheuristics based on GA are the most common: Leon 
and Ramamoorthy (1995), Lee and Kim (1996), Hartmann (1998), Hartmann 
(2002), Alcaraz and Maroto (2001), Coelho and Tavares (2003), Hindi et al 
(2002), Toklu (2002), Vails et al (2003). Simulated annealing algorithms which 
can handle non-preemptive resource constrained project scheduling problem 
are presented by Boctor (1996), Cho and Kim (1997), Bouleimen and Lecocq 
(2003). Tabu search based metaheuristics are proposed by Pinson et al (1994) 
and Baar et al (1997), Nonobe and Ibaraki (2002) and Thomas and Salhi (1998). 
Merkle et al (2002) proposed an ant colony approach to the RCPSR 

In addition to applying these heuristics and metaheuristics, forward-backward 
improvement (FBI) steps are suggested by Tormos and Lova (2001), Tormos 
and Lova (2003) and Vails et al (2005). This step is also called double jus­
tification technique. In FBI, a given schedule is compressed by eliminating 
unnecessary pockets of slack on a Gantt Chart. 

Surprisingly, neural network (NN) based techniques have not been applied to 
the RCPSP to the best of our knowledge. NN based approach has been applied 
to the job-shop scheduling problem (Foo and Takefuji (1988), and Sabuncuoglu 
and Gurgun (1996)), and the traveling salesman problem (Hopfield and Tank 
(1985)). Their approach is based on Hopfield networks. While this approach 
worked for smaller problem instances (up to 5x5), it failed to provide good 
solutions in reasonable time, for larger problem instances such as (10x10). 
Agarwal et al (2003) proposed a different kind of approach for using neural 
networks, called the AugNN approach, for solving task-scheduling problems. 
The performance of this alternative NN approach does not deteriorate with 
larger problem size. 

12,3 Adaptive learning approach for serial schedule 
generation 

As mentioned in Section 1, two types of schedule generation schemes are 
used in RCPSP, viz., serial and parallel. In the serial scheduling scheme, a 
priority list of activities is determined at time zero. This list is based on some 
heuristic such as latest finish time (LFT). The ordering of activities in a given 
priority list must, of course, follow precedence constraints, but is independent 
of the resource constraints. Given a priority list, activities are scheduled in the 
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given order at the earliest possible clock time at which the precedence con­
straints are satisfied and the resources are available. This type of scheduling is 
similar to the permutation flow-shop scheduling in which the order of jobs is 
fixed a priori and scheduling occurs at the earliest possible clock time depend­
ing on resource availability and precedence constraints. Agarwal et al (2005) 
applied an adaptive learning approach to the permutation flow-shop problem. 
Due to the similarities between these two problems, we apply the ALA approach 
to the serial schedule generation. 

The ALA is a non-deterministic local-search approach based on neural-
networks principles. In this approach, processing times of activities are pa­
rameterized using a weight factor. The problem of optimally scheduling a 
given project is then posed as the problem of finding the optimal set of weights 
in the weight search space, similar to the way non-linear mapping functions are 
determined in neural networks. Reinforcement and backtracking techniques 
are applied as part of weight modification strategies. 

Notation 
A 

Aj 

z 

PTj 

W^ 

WPTj 

ESTj 

LSTj 

^max 

MSz 

RF 

TINI 

a 

BMS 

BWj 

used: 
Set of activities = {1, . . , n} 

j ^ ^ activity node, j e A 

Current iteration 

Processing time of activity j 

Weight associated with the Activity Aj 

Weighted processing time of Activity Aj 

Earliest start time of activity j 

Latest start time of activity j 

Max number of iterations 

Makespan in the z^^ iteration 

Reinforcement factor 

Tolerate iterations with no improvement 

Learning rate 

Best makespan 

Best weights 

Step 1 

Step 2 

Initialization 

Initialize Vj E A Wi 1 
Initialize the iteration counter zio \. 

Calculate weighted processing times 

Calculate Vj G A WPTj - Wj * PTj 
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Step 3 : Determine priority list 

Determine the priority list using a heuristic such as 

earliest start time (EST) or latest finish time (LFT), 

where EST or LFT are calculated using WPTj instead of 

PT^. 

Step 4 : Determine makespan 

Find a feasible schedule using the priority list. In other 

words, schedule each activity at its earliest possible time 

given precedence and resource constraints. This 

schedule gives us the makespan MSz. 

Step 5 : Apply learning strategy and modify weights 

a. If MSz is the best makespan so far, save the current 

weights as best weights (BWj) and the makespan as 

the best makespan (BMS). 

b. If z =^ Zmax, go to Step 7. 

c. If z > I, and if an improvement occurs, reinforce the 

weights as follows: 

(Wj)z = {Wj)z + RF * i{Wj)z - W ) . - i ) . 

If no improvement occurs in this iteration, continue. 

d. If z > TIN I and if no improvement has occurred in 

the past TINI iterations then 

Set Wj - BWj 

e. Modify the weights using the following strategy: 

Generate a random number RND between 0 and 1 

using uniform distribution. 

If RND > 0.5 then iWj)z^i = iWj)z + RND*a *P; 

If RND <=0.5 then iWj)z-^i = (Wj)z - RND*a *P '̂ 

Step 6 : Next iteration. 

Increment z by one and go to step 2. 

Step 7 : Display Solution 

The BMS is the solution. Take the BWj and generate 

the schedule using the heuristic. 

The learning rate (a) used in Step 5e determines the degree of weight change 
per iteration. A higher rate leads to a greater change and vice versa. One could 
therefore control the granularity of the search by varying a. The learning rate 
should neither be too low nor too high. A low a will slow down convergence and 
make it difficult to jump local minima, while a high a will render the search too 
erratic or volatile to afford convergence. With some empirical trial and error,, 
we found that a rate of 0.001 worked well for all the problems. 
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The reinforcement factor, RF, used in Step 5c is used to reinforce weights 
during iterations that show improved results. Intuitively, such reinforcement 
learning, common in neural networks, helps the search process by allowing 
the search to explore the newly discovered good neighborhood for a few extra 
iterations. Empirically, we found that an RF value of 2 gave better results 
than other RF values. Backtracking used in step 5d is used to backtrack to 
the previous best set of weights if no improvement has been found in a given 
number of iterations. 

12.4 AUGNN framework for parallel schedule generation 
In parallel schedule generation, the order in which the activities are going to 

be scheduled is not decided at time zero. The scheduling decisions are made 
on a clock timer, at times when activities can start and resources are available, 
Agarwal et al (2003) applied the AugNN approach for parallel schedule gen­
eration for the task scheduling problem which is a special case of RCPSR In 
task scheduling, there is only one type of resource and each task needs only 
one unit of that resource type. We extend Agarwal et al's AugNN formulation 
of task scheduling problem to generate parallel schedules for RCPSP in which 
there are multiple resources and each activity needs multiple units of each re­
source. We describe the AugNN framework with the help of a simple RCPS 
problem shown in Figure 16.1. In this problem, there are six activities plus two 
zero-time dummy activities for the initial and final activities. There are three 
renewable resource types Rl, R2 and R3. Each activity's duration and resource 
requirements are also shown in Figure 16.1. In this problem, the longest path 
(in terms of number of activities) has 5 activities - Al, A4, A6 or A2, A5, A6 
plus the two dummy activities. 

Dur: 4 
Rl: 3 
R2: 5 
R3: 2 

Figure 12.1. Example RCPS Problem 
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In the AugNN approach, the project graph of Figure 16.1 is framed as an 
n-layered neural network as shown in Figure 16.2. n, in this case is 8, which 
is 2(5-1), because 5 is the number of activities on the longest path. The set of 
activities at each level are placed in an activity layer. The p^^ activity layer is p 
activities removed from the initial dummy activity. Each activity layer, except 
the dummy activity layers, is followed by a resource layer. The resource layer 
represents all the available resources. Input, activation and output functions 
for activity and resource layers are designed to capture the constraints of the 
problem. We will briefly describe the purpose of these functions. 

Activity 
layer 

Resource Node 

Activity 
layer 

Activity 
layer 

Resource Node 

Weight on links 
between activity and 
resource layers 

Figure 12.2. AugNN Representation of the Example Problem 
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Input Functions 
The activity nodes get their input from the initial dummy node and resource 

layers. These functions are used to enforce the precedence constraints. When 
an activity node receives as many signals as the number of preceding activities, 
the activity is considered ready to be assigned. 

The resource layer gets its input from the activity nodes preceding it. When 
it gets an input, it knows that the activity is ready to start and that resources, if 
available, can be assigned. 

Activation Functions 
The activation functions of the activity nodes maintain the state of each 

activity. The activation functions of the resource layer keep track of resource 
availability and assignment of resources to activities. The priority rule is applied 
through these activation functions. 

Output Functions 
The output function of the activity node sends a signal to the resource layer 

when it is ready to be assigned. The output function of the resource layer signals 
the end of the activity. 

12.4,1 Mathematical Formulation and Algorithm Details 
Notation 

n : Number of activities 

r : Number of resource types 

A : Set of activities = { 1 , . . . ,n} 

R : Set of resource types = {7,... ,r} 

Tik : Amount of resource k required by activity /, k £R, i ^ A 

bk ' Total availability of resource type k 

k : Current iteration 

Aj : j * ^ activity node, j e A 

RLj : Node for resource layer connected from Aj ,j^A 

TSj : Total number of successors of Aj, j G A 

TRPTj : Total remaining processing time of Aj ,j £ A 

SLK : Slack for activity Aj ,j e A 

ojj : Weight on the link from A j to resource layer 

a : Learning coefficient 

Sk : Error in iteration k 

I : Initial dummy activity node 

F : Final dummy activity node 
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t 

STj 

PTj 

LSTj 

LFTj 

PRj 

SUj 

Winj 

SCP 

Threshold value of Aj = Number of tasks immediately 

precedingAj, y G A U F 

Elapsed time in current iteration 

Start time of activity^. 

Processing time of activity^ 

Latest start time of activity^ 

Latest finish time of activity^ 

Set of tasks that immediately precede tasky, j ^AD F 

Set of tasks immediately succeeding task j , y G A 

Winning status of.4j, y G A 

Set of tasks currently in process. 

Following are all functions of elapsed time t: 
lAj (t) : Input function value of activity node jJelUAUF 

IRLAj (t) : Input function value of resource layer from activity node 

AjJ G A 

IRLRLjk it) : Input function value of resource layer j from other 

resource layers for each resource type k, j ^ A, k ^ R 

OAj (t) : Output function value of activity node jJelUAUF 

ORLFjp{t) : Output of RLj to activity nodeAp in the forward direction, 

;• G A, pe SUj 

ORLRj(t) : Output of Resource layer RLj to activity nodeAj in reverse 

direction, j EA 

ORLLjp{t) : Output of Resource layer RLj to RLp in lateral direction, 

J>peAJy^p 

6Aj (t) : Activation function of activity node j , j E A 

ORLj (t) : Activation function of Resource layer RLj, j £T 

assign j (t) : Activity j assigned at time t 

S{t) : Set of activities that can start at time t, 

S{t) = {Aj\OAj(t) = 1} 

RAvk (t) : Number of resources of type k available at time t 

12.4.2 Preliminary Steps 
1 Calculate the Lower Bound, which is the same as the critical path duration 

under infinite resource availability assumption. 

2 Weights {uj) are initialized at 10.00. The value of 10 was arrived at after 
some computational experience. The value of the initial weights should 
be such that after subsequent modification to weights, the value should 
remain positive. The choice of the value of initial weight therefore also 
depends on the value of the learning coefficient used. 
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3 Calculate the threshold of each task TJ. The threshold of activity j is de­
fined as the number of tasks immediately preceding task j . The threshold 
value is used to determine when a task is ready to start. 

12.4.3 AugNN Functions 
The neural network algorithm can be described with the help of the learning 

strategy and the input functions, the activation functions and the output functions 
for the task nodes and the machine nodes. 

12.4.3.1 Activity layer functions. Input functions, activation states 
and output functions are now explained for the nodes on the activity layer. 

Input function 
yjeAUF IAj(0) = 0 
y j E. I (the starting signal of the initial dummy node is 1) IAj(0) = 1 
Vg ePRjJ eTUF IAj{t) = IAj{t - 1) + E ORLFgj{t) 

Q 

lAj helps to enforce precedence constraint. When lAj becomes equal to TJ, 
the activity can be assigned. 

Activation function 
Activity nodes' initial activation state (i.e. at t=0) is I, \/j eT 

eAj{t) = 

IAj{t)<Tj 

{9Aj{t - 1) - 1 V 2) A IAj{t) = Tj 

{9Aj{t - 1) - 2 V 3) A ORLRjit) < 0 

{eAj{t - 1) - 4 V {OAjit - 1) =z 3 A ORLRjit) = 0) 

Note: For the initial dummy node, TJ — 1 
State 1 above implies that activity j is not ready to be assigned because input 

to activity j is less than its threshold r. State 2 implies that activity j is ready 
to be assigned because its input equals its threshold. State 3 implies that the 
activity is in process because it is receiving a negative signal from the resource 
layer that it is currently being processed. State 4 implies that the activity is 
complete and the negative signal from the resource layer is no longer there. 

Output function 

OAj{t) = 
1 if OAjit) = 2 

0 otherwise 

If an activity is ready to start but not assigned yet, it sends a unit signal to the 
resource layer. 
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F-Node 

OAAt) -
t\fIAF{t) = rj 
0 otherwise 

The final node outputs the makespan t, the moment its threshold point is reached. 

12.4.3,2 Resource layer functions. Input, activation and output func­
tions of resource layers are now explained. 

Input function 
Vj G A IRLAj{t) = OAj{t) * LVj 
This is the weighted output from activity node j . Whenever it is positive, it 

means that the resources are being requested by activity j for assignment. 
\/jeAkeR IRLRLjk{t) - ^ ORLLpjk 

pe SOP 

Activation function 
LtiXj{t) == IRI^ji^) "^TaskHeuristicParametevj 
Let RAvj(t): Whether resources for activity] are available or not 

RAv(t) = 1 ^ if V/c G i? (6fc - IRLRLjk > rjk) 
1 0 otherwise 

1 if RAvj{t) = lA 

assigujit) = { xj{t) - max[xj(t)|A^- G 5(i)] A Vj G A Xj{t) > 0 

0 otherwise 

The assignment takes place if the product of Input of the resource layer 
and the Heuristic dependent activity parameter is positive and highest and if 
the resources are available. The requirement for highest is what enforces the 
chosen heuristic. 

TaskHeuristicParameter is a task parameter dependent on the chosen heuris­
tic. 

' TRPT 

LFT 

EST 

EFT 

LST 

RND 

TaskHeuristicParameter 

for T i ? P r heuristic 

for LFT heuristic 

for £;5T heuristic 

for EFT heuristic 

for LST heuristic 

for i?AA^J90M heuristic 
If assignj{t) — 1, then STj — t. 
If \S{t)\ > Ithen Wm -̂ -= 1. 
Resource layers' Initial Activation State (i e. a t t - 0 ) i s 1. Vz G MJ eT, 
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eRLj{t) = \ ' 

if RAvj{t) = 1 

2 if 0RLj{t - 1) = 1 V 6RLj{t) = 1) A assignj{t) = 1 

3 if {eRLj{t-l) = 2\/Z)M<STj + PTj: 

4 if ORLj {t-l) = 3At^STj + PTj 

State 1 implies that the resources are available. State 2 implies that the 
resources are busy and that they were just assigned. State 3 implies that the 
resources are busy and state 4 implies that the resources were just released. 

Output function 
if ORLjit) = 4 
if ORLjit) = 1,2,3 

^̂  ̂  I 0 neRLjit) = iA 

The output of F represents the makespan and the assignj (t) gives the sche­
dule. If a resource is either assigned or released during a certain time unit, all 
functions need to be recalculated without incrementing the time period. 

12.4.4 Learning Strategy 
A learning strategy is required to modify the weights. In this study we used 

the following learning strategy: 
Winning activities: 
If Vj G A Wiuj = 1 then (c<;j)/e+i = {^j)k — o; * TaskParameterj * e^ 
Non-winning activities: 
If Vj E A Wiuj = 0 then {ujj)k-^i = {ujj)k + oi ^TaskParameterj * Sk 
In addition to these weight changes in each iteration, we propose two addi­

tional features that govern learning, namely, reinforcement and backtracking. 
These features are explained here briefly. 

Reinforcement: 
Neural Networks use the concept of positive reinforcement of weights if the 

network performs well. We implement this idea of reinforcement by imple­
menting the following rule. If in a particular iteration the makespan improves, 
the weight changes of that iteration with respect to the previous iteration are 
magnified by a factor called the reinforcement factor (RF). 
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Backtracking: 
Sometimes it is possible to not obtain any improvement over several itera­

tions. When this happens, it is best to abandon that search path and start over 
from the previous best solution weights. We can parameterize how many it­
erations of no improvement to tolerate. This backtracking technique was part 
of our learning strategy. In order to do this, we store the set of weights cor­
responding to the best solution obtained so far and revert back to it whenever 
solution does not improve for some iterations. 

12.4.5 End of iteration routines 
1 Calculate the gap which is the difference between obtained makespan 

and the lower bound 

2 Store the best solution so far. 

3 If the lower bound is reached, stop the program. 

4 If the number of iterations exceeds a certain specified number, such as 
1000 or 5000, stop the program. 

5 If continuing with the next iteration, modify weights using the learning 
strategy. Apply backtracking and reinforcement, whenever necessary. 

12.5 Computational experiments and results 

We now present the result of the computational tests and compare them with 
the best published algorithms. The HNA approach algorithms were coded in Vi­
sual Basic 6.0 and run on a Celeron 2300 MHz personal computer. Well known 
benchmark problem instance sets (Kolisch et al (1995) and Kolisch and Sprecher 
(1996)) are used to evaluate the algorithm (PSPLIB, http://www.bwl.uni-kiel.de 
/Prod/psplib/ index.html). The sets J30 and J60 consists of 480 problem in­
stances with four resource types and 30 and 60 activities, respectively. The 
set J120 consists of 600 problem instances with four resource type and 120 
activities. 

In our implementation, the learning coefficient a is set to 0.001 and the 
weights are initialized at 10. An initial solution is generated using a priority 
rules such as LFT or EST. The weights are modified after each iteration, using 
the learning strategy. The stopping criterion is to stop if the solution is equal 
to the lower bound or if a predetermined number of maximum schedules is 
reached. We set the maximum number of schedules to 1000 and 5000. 

Tables 16.1 through 16.3 display the results obtained by our algorithm and 
other tested heuristics for 1,000 and 5,000 schedules, respectively. In these 
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Table 12,1. Percent Average Deviations from the Optimum Solution: Comparative Results for 
the J30 Problems 

Algorithm 

Sampling-LFT-FBI 

GA - FBI 

HNA - FBI 

Sampling - LFT - FBI 

GA - hybrid, FBI 

Scatter Search - FBI 

GA - FBI 

GA - FBI 

GA - Self adapting 

SA - Activity List 

TS - Activity List 

Sampling - FBI 

GA - Activity List 

Adaptive Sampling 

GA 

Adaptive Sampling 

Sampling - Global 

TS 

GA - Random Key 

GA - Priority Rule 

Sampling - WCS 

Sampling - LFT 

Sampling - random 

Sampling - random 

GA 

SOS 

both 

both 

both 

both 

serial 

serial 

serial 

serial 

both 

serial 

serial 

serial 

serial 

both 

serial 

both 

serial 

serial 

serial 

parallel 

parallel 

serial 

parallel 

Reference 

Tormos and Lova (2003) 

Alcaraz et al (2004) 

this paper 

Tormos and Lova (2001) 

Vails et al (2003) 

Debels et al (2004) 

Alcaraz and Maroto (2001) 

Vails et al (2005) 

Hartmann (2002) 

Bouleimen and Lecocq (2003) 

Nonobe and Ibaraki (2002) 

Vails et al (2005) 

Hartmann (1998) 

Schirmer (2000) 

Coelho and Tavares (2003) 

Kolisch and Drexl (1996) 

Coelho and Tavares (2003) 

Baaretal(1997) 

Hartmann (1998) 

Hartmann (1998) 

Kolisch (1996b) 

Kolisch (1996b) 

Kolisch (1995) 

Kolisch (1995) 

Leon and Ramamoorthy (1995) 

# of Schedules 

1,000 

0.23 

0.25 

0.25 

0.25 

0.27 

0.27 

0.33 

0.34 

0.38 

0.38 

0.46 

0.46 

0.54 

0.65 

0.74 

0.74 

0.81 

0.86 

1.03 

1.38 

1.40 

1.40 

1.44 

1.77 

2.08 

5,000 

014 

0.06 

0.11 

0.15 

0.06 

0.11 

0.12 

0.20 

0.22 

0.23 

0.16 

0.28 

0.25 

0.44 

0.33 

0.52 

0.54 

0.44 

0.56 

1.12 

1.28 

1.29 

1.00 

1.48 

1.59 

tables we present the type of heuristics, the type of schedule generation scheme 
used, the authors of each heuristic and the average deviation from the criti­
cal path based lower bound (from the optimal solution for J30 instances) for 
1000 and 5000 schedules, respectively. In each table, the heuristics are sorted 
according to descending performance with respect to 1000 schedules. 

Table 16.1 presents the percentage deviations from the optimal makespan 
for the instance set J30 in which all problem instances have been solved to 
optimality by Demeulemeester and Herroelen (1997) branch and bound pro­
cedure. Our algorithm solved 448 out of 480 problems to optimality and the 
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average deviation from the optimal solution is just 0.25 and 0.11 percent for 
1000 schedules and 5000 schedules, respectively. 

Table 12.2. Percent Average Deviations from the Critical-Path-Based Lower Bound: Compar­
ative Results for the J60 Problems 

#of 
Algorithm SGS Reference 1,000 

Schedules 

5,000 

GA - hybrid, FBI 

HNA - FBI 
Scatter Search - FBI 

GA - FBI 

Sampling-LFT-FBI 

Sampling - LFT - FBI 

GA - FBI 

GA - Self adapting 

GA - FBI 

GA - Activity List 

Sampling - FBI 

SA - Activity List 

Adaptive Sampling 

TS - Activity List 

GA 

GA - Priority Rule 

Adaptive Sampling 

Sampling - LFT 

Sampling - WCS 

Sampling - Global 

TS 

GA 

GA - Random Key 

Sampling - random 

Sampling - random 

serial 

both 

serial 

both 

both 

both 

serial 

both 

serial 

serial 

serial 

serial 

both 

serial 

serial 

serial 

both 

parallel 

parallel 

serial 

serial 

parallel 

serial 

Vails et al (2003) 

this paper 

Debels et al (2004) 

Alcaraz et al (2004) 

Tormos and Lova (2003) 

Tormos and Lova (2001) 

Vails et al (2005) 

Hartmann (2002) 

Alcaraz and Maroto (2001) 

Hartmann (1998) 

Vails et al (2005) 

Bouleimen and Lecocq (2003) 

SchirmerOO 

Nonobe and Ibaraki (2002) 

Coelho and Tavares (2003) 

Hartmann (1998) 

Kolisch and Drexl (1996) 

Kolisch (1996b) 

Kolisch (1996b) 

Coelho and Tavares (2003) 

Baaretal(1997) 

Leon and Ramamoorthy (1995) 

Hartmann (1998) 

Kolisch (1995) 

Kolisch (1995) 

11.56 

11.72 

11.73 

11.89 

12.04 

12.11 

12.21 

12.21 

12.57 

12.68 

12.73 

12.75 

12.94 

12.97 

13.28 

13.30 

13.51 

13.59 

13.66 

13.80 

13.80 

14.33 

14.68 

14.89 

15.94 

11.10 

11.39 
11.10 

11.19 

11.72 

11.82 

11.27 

11.70 

11.86 

11.89 

12.35 

11.90 

12.59 

12.18 

12.63 

12.74 

13.06 

13.23 

13.21 

13.31 

13.48 

13.49 

13.32 

14.30 

15.17 

For J60 problems set, some of the optimal solutions are not known, so we 
measure the average percentage deviation from the critical-path based lower 
bound for comparison purposes. Table 16.2 summarizes the results for J60 
test instances. 295 out of 480 instances are solved to critical path based lower 
bound. The average deviation from the critical path based lower bound is n.72 
and 11.39 percent for 1000 and 5000 schedules, respectively. 
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Table 12.3. Percent Average Deviations from the Critical-Path-Based Lower Bound: Compar­
ative Results for the J120 Problems 

#of 
Algorithm SGS Reference 1,000 

Schedules 

5,000 

GA - hybrid, FBI 

HNA - FBI 

Scatter Search - FBI 

GA - FBI 

Sampling - LFT - FBI 

Sampling - LFT - FBI 

GA - FBI 

GA - Self adapting 

Sampling - FBI 

GA - FBI 

GA - Activity List 

Sampling - LFT 

Sampling - WCS 

Adaptive Sampling 

GA - Priority Rule 

GA 

TS - Activity List 

Sampling - Global 

Adaptive Sampling 

SA - Activity List 

Sampling - LFT 

GA 

Sampling - random 

GA - Random Key 

Sampling - random 

serial 

both 

serial 

serial 

both 

both 

both 

both 

serial 

serial 

serial 

parallel 

parallel 

both 

serial 

serial 

serial 

serial 

both 

serial 

Serial 

parallel 

serial 

serial 

Vails et al (2003) 

this paper 

Debels et al (2004) 

Vails et al (2005) 

Tormos and Lova (2003) 

Tormos and Lova (2001) 

Alcaraz et al (2004) 

Hartmann (2002) 

Vails et al (2005) 

Alcaraz and Maroto (2001) 

Hartmann (1998) 

Kolisch (1996b) 

Kolisch (1996b) 

Schirmer (2000) 

Hartmann (1998) 

Coelho and Tavares (2003) 

Nonobe and Ibaraki (2002) 

Coelho and Tavares (2003) 

Kolisch and Drexl (1996) 

Bouleimen and Lecocq (2003) 

Kolisch (1996b) 

Leon and Ramamoorthy (1995) 

Kolisch (1995) 

Hartmann (1998) 

Kolisch (1995) 

34.07 

34.94 

35.39 

35.98 

35.98 

36.32 

36.53 

37.19 

38.21 

39.36 

39.37 

39.60 

39.65 

39.85 

39.93 

39.97 

40.86 

41.36 

41.37 

42.81 

42.84 

42.91 

44.36 

45.82 

49.25 

32.54 

34.57 

33.24 

35.30 

35.30 

35.30 

33.91 

35.39 

37.47 

36.57 

36.74 

38.75 

38.77 

38.70 

38.49 

38.41 

37.88 

40.46 

40.45 

37.68 

41.84 

40.69 

43.05 

45.25 

47.61 

Table 16.3 summarizes the results for J120 set. 155 out of 600 problems 
matched the critical path based lower bound. The average deviations are 34.94 
and 34.57 percent, respectively, for 1000 and 5000 schedules. 

12,6 Conclusions 
We proposed, developed and tested a new metaheuristic approach based 

on the principles of neural networks. Augmented-neural-network approach 
was used for parallel schedule generation and adaptive-learning approach for 
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serial schedule generation scheme. We called this approach the hybrid neural 
approach (HNA), To the best of our knowledge, this is the first time that neural-
networks based metaheuristics have been applied to the RCPSP. So, research in 
this approach is still in its infancy. We tested this approach on some well-known 
RCPSP benchmark problem instances in the literature. The computational 
results are very encouraging as they compare very well with some of the best 
results in the literature from techniques such as tabu search, simulated annealing, 
genetic algorithms and scatter search. The approach, in spite of being relatively 
new, gave very good results, and therefore appears to be very promising and 
worthy of further exploration. 

Future research may focus on developing some hybrid approaches involving 
the HNA approach and some of the other successful approaches such as genetic 
algorithms and scatter search, to further improve the results. This new approach 
should also be applied to multi-mode resource constrained project scheduling 
problems with renewable and non-renewable resources. 
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