
Chapter 12

RESOURCE CONSTRAINED
PROJECT SCHEDULING:
A HYBRID NEURAL APPROACH

Selcuk Colak, Anurag Agarwal, Selcuk S. Erenguc
Department of Decision and Information Sciences, Warrington College of
Business Administration, University of Florida, Gainesville, FL 32611, USA
scolak@ufl.edu, anurag.agarwal@cba.ufl.edu, selcuk.erenguc@cba.ufl.edu

Abstract This study proposes, develops and tests a hybrid neural approach (HNA) for
the resource constrained project scheduling problem. The approach is a hybrid
of the adaptive-learning approach (ALA) for serial schedule generation and the
augmented neural network (AugNN) approach for parallel schedule generation.
Both these approaches are based on the principles of neural networks and are very
different from Hopfield networks. In the ALA approach, weighted processing
times are used instead of the original processing times and a learning approach is
used to adjust weights. In the AugNN approach, traditional neural networks are
augmented in a manner that allows embedding of domain and problem-specific
knowledge. The network architecture is problem specific and a set of complex
neural functions are used to (i) capture the constraints of the problem and (ii)
apply a priority rule-based heuristic. We further show how forward-backward
improvement can be integrated within the HNA framework to improve results. We
empirically test our approach on benchmark problems of size J30, J60 and J120
from PSPLIB. Our results are extremely competitive with existing techniques
such as genetic algorithms, simulated annealing, tabu search and sampling.

Keywords: Project Management, Resource Constrained Project Scheduling, Neural Net­
works, Heuristics

12.1 Introduction

The resource-constrained project scheduling problem (RCPSP) is a well-
known NP-Hard scheduling problem (Blazewicz et al (1983)). It is a classical
problem in operations research with broad applicability in project management
and production scheduling. It involves minimizing the makespan of a project

298 PERSPECTIVES IN MODERN PROJECT SCHEDULING

by scheduling its activities which are subject to precedence and resource con­
straints. The amounts of available resources are fixed and known in advance.
Resource requirements and processing times for each activity are determin­
istic and also known in advance and preemption of activities is not allowed.
This problem has received the attention of many researchers for well over four
decades. One of the recent research focuses in this area has been towards
developing new metaheuristic approaches using artificial intelligence and/or
biologically-inspired techniques. For solving this problem, two schedule gen­
eration schemes are commonly used - serial and parallel. In this work, we
propose, develop and test a new hybrid metaheuristic approach based on the
principles of neural networks. We use adaptive-learning approach (ALA) for
serial and augmented-neural-network approach (AugNN) for parallel schedule
generation scheme. We call our approach the hybrid-neural approach (HNA).

In the adaptive-learning approach (Agarwal et al (2005)), weighted process­
ing times are used instead of the given processing times. Well-known heuristics
are applied using these weighted processing times. An intelligent perturbation
strategy used to adjust the weights allows non-deterministic local search. The
AugNN approach was first applied to parallel schedule generation in the task-
scheduling problem by Agarwal et al (2003). With suitable modifications,
the AugNN approach can be applied to the parallel generation scheme for the
RCPSP. The AugNN approach is quite different from the Hopfield network ap­
proach which has been applied to the traveling-salesman problem (Hopfield and
Tank (1985) and job-shop scheduling (Sabuncuoglu and Gurgun (1996), Foo
and Takefuji (1988)). In the AugNN approach, the traditional neural network
is augmented to allow embedding of domain and problem-specific knowledge.
The network architecture is designed to be problem specific; instead of the
standard 3-layered network, it is a p-layered network, where p depends on the
problem structure. Details will be explained in Section 16.4. Further, in the
AugNN approach, the input, activation and output functions are complex func­
tions, designed to (i) enforce the problem constraints, and (ii) apply a known
priority heuristic. The AugNN approach, thus, allows incorporation of domain
and problem-specific knowledge and affords the advantages of both the heuris­
tic and iterative approaches. In this study, forward-backward improvement
steps (Tormos and Lova (2001), Vails et al (2005) are also integrated within this
framework of hybrid-neural approach.

We implement and test our proposed hybrid-neural approach on some well-
known RCPS benchmark problem instances in the literature. Our results are
very competitive with those of other techniques. Given that this approach is
relatively new, it seems to hold a lot of promise; perhaps in future studies, it
can be used in conjunction with other successful techniques, such as genetic
algorithms, scatter search etc. to give improved results.

Resource Constrained Project Scheduling: A Hybrid Neural Approach 299

The rest of the paper is organized as follows. Section 16.2 presents a literature
review for the RCPSP. We discuss how ALA is applied to the serial schedule
generation problem in Section 16.3. The details of AugNN formulation for
solving the parallel schedule generation for the RCPSP are given in Section 16.4.
In Section 16.5, computational results are presented and discussed. Finally,
Section 15.6 provides a summary of the paper and discusses future research
ideas.

12.2 Literature review
The research literature for the RCPSP is quite large. We refer the readers to

the review papers by Icmeli et al (1993), Ozdamar and Ulusoy (1995), Herroelen
et al (1998), Brucker et al (1999), Hartmann and Kolisch (2000), Kolisch and
Padman (2001), Kolisch and Hartmann (2005),

The various exact methods applied to the RCPSP can be classified into
three categories: dynamic programming, zero-one programming and implicit
enumeration with branch and bound. Pritsker et al (1969), Patterson and
Huber (1974), Patterson and Roth (1976) proposed zero-one programming
methods. Exact approaches based on implicit enumeration with branch and
bound have been widely used: Davis and Heidom (1971), Talbot and Patterson
(1978), Christofides et al (1987), Demeulemeester and Herroelen (1992), De-
meulemeester and Herroelen (1997), Brucker et al (1998), Mingozzi et al
(1998), Domdorf et al (2000). Blazewicz et al (1983) showed that the RCPSP
is a generalization of the well-known job-shop-scheduling problem and is NP-
Hard. While exact solution methods are able to solve smaller problems, heuris­
tic and metaheuristic approaches are needed for larger problem instances.

Priority-rule based heuristics combine one or more priority rules and schedule-
generation schemes (serial, parallel or both) in order to construct one or more
schedules (Hartmann and Kolisch (2000)). If only one schedule is generated,
it is called a single pass method and if more than one schedule is generated, it
is called an X-pass (or multi-pass) method. Some of the well-known priority
rules are LFT (Latest Finish Time), EST (Earliest Start Time) and MTS (Most
Total Successor). Although, priority-rule based heuristics are easy to imple­
ment and fast in terms of the computational effort, they are not very effective
with respect to the average deviation from the optimal solution. A variety of
priority single-pass methods have been widely used to solve the RCPSP: Davis
and Patterson (1975), Cooper (1976), Alvares-Valdes and Tamarit (1989), Boc-
tor (1990), Ozdamar and Ulusoy (1994), Kolisch (1996a), Kolisch (1996b),
Multi-pass methods can be categorized as multi-priority rule methods and
sampling methods. Multi-priority rule methods combine the schedule gen­
eration scheme with a different priority rule at each iteration: Ulusoy and
Ozdamar (1989), Boctor (1990), Thomas and Salhi (1998). Sampling methods

300 PERSPECTIVES IN MODERN PROJECT SCHEDULING

use a serial generation scheme and a priority rule to obtain the first schedule.
Then they bias the order obtained by the priority rule by using a random de­
vice: Cooper (1976), Al vares-Valdes and Tamarit (1989), Drexl (1991), Kolisch
(1996a), Kolisch (1996b), Kolisch and Drexl (1996), Schirmer and Riesenberg
(1998), Schirmer (2000),

Many metaheuristic methods, such as genetic algorithms (GA), simulated
annealing (SA), tabu search (TS), and ant colonies (AC), have been applied to
solve the RCPSR Metaheuristics based on GA are the most common: Leon
and Ramamoorthy (1995), Lee and Kim (1996), Hartmann (1998), Hartmann
(2002), Alcaraz and Maroto (2001), Coelho and Tavares (2003), Hindi et al
(2002), Toklu (2002), Vails et al (2003). Simulated annealing algorithms which
can handle non-preemptive resource constrained project scheduling problem
are presented by Boctor (1996), Cho and Kim (1997), Bouleimen and Lecocq
(2003). Tabu search based metaheuristics are proposed by Pinson et al (1994)
and Baar et al (1997), Nonobe and Ibaraki (2002) and Thomas and Salhi (1998).
Merkle et al (2002) proposed an ant colony approach to the RCPSR

In addition to applying these heuristics and metaheuristics, forward-backward
improvement (FBI) steps are suggested by Tormos and Lova (2001), Tormos
and Lova (2003) and Vails et al (2005). This step is also called double jus­
tification technique. In FBI, a given schedule is compressed by eliminating
unnecessary pockets of slack on a Gantt Chart.

Surprisingly, neural network (NN) based techniques have not been applied to
the RCPSP to the best of our knowledge. NN based approach has been applied
to the job-shop scheduling problem (Foo and Takefuji (1988), and Sabuncuoglu
and Gurgun (1996)), and the traveling salesman problem (Hopfield and Tank
(1985)). Their approach is based on Hopfield networks. While this approach
worked for smaller problem instances (up to 5x5), it failed to provide good
solutions in reasonable time, for larger problem instances such as (10x10).
Agarwal et al (2003) proposed a different kind of approach for using neural
networks, called the AugNN approach, for solving task-scheduling problems.
The performance of this alternative NN approach does not deteriorate with
larger problem size.

12,3 Adaptive learning approach for serial schedule
generation

As mentioned in Section 1, two types of schedule generation schemes are
used in RCPSP, viz., serial and parallel. In the serial scheduling scheme, a
priority list of activities is determined at time zero. This list is based on some
heuristic such as latest finish time (LFT). The ordering of activities in a given
priority list must, of course, follow precedence constraints, but is independent
of the resource constraints. Given a priority list, activities are scheduled in the

Resource Constrained Project Scheduling: A Hybrid Neural Approach 301

given order at the earliest possible clock time at which the precedence con­
straints are satisfied and the resources are available. This type of scheduling is
similar to the permutation flow-shop scheduling in which the order of jobs is
fixed a priori and scheduling occurs at the earliest possible clock time depend­
ing on resource availability and precedence constraints. Agarwal et al (2005)
applied an adaptive learning approach to the permutation flow-shop problem.
Due to the similarities between these two problems, we apply the ALA approach
to the serial schedule generation.

The ALA is a non-deterministic local-search approach based on neural-
networks principles. In this approach, processing times of activities are pa­
rameterized using a weight factor. The problem of optimally scheduling a
given project is then posed as the problem of finding the optimal set of weights
in the weight search space, similar to the way non-linear mapping functions are
determined in neural networks. Reinforcement and backtracking techniques
are applied as part of weight modification strategies.

Notation
A

Aj

z

PTj

W^

WPTj

ESTj

LSTj

^max

MSz

RF

TINI

a

BMS

BWj

used:
Set of activities = {1, . . , n}

j ^ ^ activity node, j e A

Current iteration

Processing time of activity j

Weight associated with the Activity Aj

Weighted processing time of Activity Aj

Earliest start time of activity j

Latest start time of activity j

Max number of iterations

Makespan in the z^^ iteration

Reinforcement factor

Tolerate iterations with no improvement

Learning rate

Best makespan

Best weights

Step 1

Step 2

Initialization

Initialize Vj E A Wi 1
Initialize the iteration counter zio \.

Calculate weighted processing times

Calculate Vj G A WPTj - Wj * PTj

302 PERSPECTIVES IN MODERN PROJECT SCHED ULING

Step 3 : Determine priority list

Determine the priority list using a heuristic such as

earliest start time (EST) or latest finish time (LFT),

where EST or LFT are calculated using WPTj instead of

PT^.

Step 4 : Determine makespan

Find a feasible schedule using the priority list. In other

words, schedule each activity at its earliest possible time

given precedence and resource constraints. This

schedule gives us the makespan MSz.

Step 5 : Apply learning strategy and modify weights

a. If MSz is the best makespan so far, save the current

weights as best weights (BWj) and the makespan as

the best makespan (BMS).

b. If z =^ Zmax, go to Step 7.

c. If z > I, and if an improvement occurs, reinforce the

weights as follows:

(Wj)z = {Wj)z + RF * i{Wj)z - W) . - i) .

If no improvement occurs in this iteration, continue.

d. If z > TIN I and if no improvement has occurred in

the past TINI iterations then

Set Wj - BWj

e. Modify the weights using the following strategy:

Generate a random number RND between 0 and 1

using uniform distribution.

If RND > 0.5 then iWj)z^i = iWj)z + RND*a *P;

If RND <=0.5 then iWj)z-^i = (Wj)z - RND*a *P '̂

Step 6 : Next iteration.

Increment z by one and go to step 2.

Step 7 : Display Solution

The BMS is the solution. Take the BWj and generate

the schedule using the heuristic.

The learning rate (a) used in Step 5e determines the degree of weight change
per iteration. A higher rate leads to a greater change and vice versa. One could
therefore control the granularity of the search by varying a. The learning rate
should neither be too low nor too high. A low a will slow down convergence and
make it difficult to jump local minima, while a high a will render the search too
erratic or volatile to afford convergence. With some empirical trial and error,,
we found that a rate of 0.001 worked well for all the problems.

Resource Constrained Project Scheduling: A Hybrid Neural Approach 303

The reinforcement factor, RF, used in Step 5c is used to reinforce weights
during iterations that show improved results. Intuitively, such reinforcement
learning, common in neural networks, helps the search process by allowing
the search to explore the newly discovered good neighborhood for a few extra
iterations. Empirically, we found that an RF value of 2 gave better results
than other RF values. Backtracking used in step 5d is used to backtrack to
the previous best set of weights if no improvement has been found in a given
number of iterations.

12.4 AUGNN framework for parallel schedule generation
In parallel schedule generation, the order in which the activities are going to

be scheduled is not decided at time zero. The scheduling decisions are made
on a clock timer, at times when activities can start and resources are available,
Agarwal et al (2003) applied the AugNN approach for parallel schedule gen­
eration for the task scheduling problem which is a special case of RCPSR In
task scheduling, there is only one type of resource and each task needs only
one unit of that resource type. We extend Agarwal et al's AugNN formulation
of task scheduling problem to generate parallel schedules for RCPSP in which
there are multiple resources and each activity needs multiple units of each re­
source. We describe the AugNN framework with the help of a simple RCPS
problem shown in Figure 16.1. In this problem, there are six activities plus two
zero-time dummy activities for the initial and final activities. There are three
renewable resource types Rl, R2 and R3. Each activity's duration and resource
requirements are also shown in Figure 16.1. In this problem, the longest path
(in terms of number of activities) has 5 activities - Al, A4, A6 or A2, A5, A6
plus the two dummy activities.

Dur: 4
Rl: 3
R2: 5
R3: 2

Figure 12.1. Example RCPS Problem

304 PERSPECTIVES IN MODERN PROJECT SCHEDULING

In the AugNN approach, the project graph of Figure 16.1 is framed as an
n-layered neural network as shown in Figure 16.2. n, in this case is 8, which
is 2(5-1), because 5 is the number of activities on the longest path. The set of
activities at each level are placed in an activity layer. The p^^ activity layer is p
activities removed from the initial dummy activity. Each activity layer, except
the dummy activity layers, is followed by a resource layer. The resource layer
represents all the available resources. Input, activation and output functions
for activity and resource layers are designed to capture the constraints of the
problem. We will briefly describe the purpose of these functions.

Activity
layer

Resource Node

Activity
layer

Activity
layer

Resource Node

Weight on links
between activity and
resource layers

Figure 12.2. AugNN Representation of the Example Problem

Resource Constrained Project Scheduling: A Hybrid Neural Approach 305

Input Functions
The activity nodes get their input from the initial dummy node and resource

layers. These functions are used to enforce the precedence constraints. When
an activity node receives as many signals as the number of preceding activities,
the activity is considered ready to be assigned.

The resource layer gets its input from the activity nodes preceding it. When
it gets an input, it knows that the activity is ready to start and that resources, if
available, can be assigned.

Activation Functions
The activation functions of the activity nodes maintain the state of each

activity. The activation functions of the resource layer keep track of resource
availability and assignment of resources to activities. The priority rule is applied
through these activation functions.

Output Functions
The output function of the activity node sends a signal to the resource layer

when it is ready to be assigned. The output function of the resource layer signals
the end of the activity.

12.4,1 Mathematical Formulation and Algorithm Details
Notation

n : Number of activities

r : Number of resource types

A : Set of activities = { 1 , . . . ,n}

R : Set of resource types = {7,... ,r}

Tik : Amount of resource k required by activity /, k £R, i ^ A

bk ' Total availability of resource type k

k : Current iteration

Aj : j * ^ activity node, j e A

RLj : Node for resource layer connected from Aj ,j^A

TSj : Total number of successors of Aj, j G A

TRPTj : Total remaining processing time of Aj ,j £ A

SLK : Slack for activity Aj ,j e A

ojj : Weight on the link from A j to resource layer

a : Learning coefficient

Sk : Error in iteration k

I : Initial dummy activity node

F : Final dummy activity node

306 PERSPECTIVES IN MODERN PROJECT SCHED ULING

t

STj

PTj

LSTj

LFTj

PRj

SUj

Winj

SCP

Threshold value of Aj = Number of tasks immediately

precedingAj, y G A U F

Elapsed time in current iteration

Start time of activity^.

Processing time of activity^

Latest start time of activity^

Latest finish time of activity^

Set of tasks that immediately precede tasky, j ^AD F

Set of tasks immediately succeeding task j , y G A

Winning status of.4j, y G A

Set of tasks currently in process.

Following are all functions of elapsed time t:
lAj (t) : Input function value of activity node jJelUAUF

IRLAj (t) : Input function value of resource layer from activity node

AjJ G A

IRLRLjk it) : Input function value of resource layer j from other

resource layers for each resource type k, j ^ A, k ^ R

OAj (t) : Output function value of activity node jJelUAUF

ORLFjp{t) : Output of RLj to activity nodeAp in the forward direction,

;• G A, pe SUj

ORLRj(t) : Output of Resource layer RLj to activity nodeAj in reverse

direction, j EA

ORLLjp{t) : Output of Resource layer RLj to RLp in lateral direction,

J>peAJy^p

6Aj (t) : Activation function of activity node j , j E A

ORLj (t) : Activation function of Resource layer RLj, j £T

assign j (t) : Activity j assigned at time t

S{t) : Set of activities that can start at time t,

S{t) = {Aj\OAj(t) = 1}

RAvk (t) : Number of resources of type k available at time t

12.4.2 Preliminary Steps
1 Calculate the Lower Bound, which is the same as the critical path duration

under infinite resource availability assumption.

2 Weights {uj) are initialized at 10.00. The value of 10 was arrived at after
some computational experience. The value of the initial weights should
be such that after subsequent modification to weights, the value should
remain positive. The choice of the value of initial weight therefore also
depends on the value of the learning coefficient used.

Resource Constrained Project Scheduling: A Hybrid Neural Approach 307

3 Calculate the threshold of each task TJ. The threshold of activity j is de­
fined as the number of tasks immediately preceding task j . The threshold
value is used to determine when a task is ready to start.

12.4.3 AugNN Functions
The neural network algorithm can be described with the help of the learning

strategy and the input functions, the activation functions and the output functions
for the task nodes and the machine nodes.

12.4.3.1 Activity layer functions. Input functions, activation states
and output functions are now explained for the nodes on the activity layer.

Input function
yjeAUF IAj(0) = 0
y j E. I (the starting signal of the initial dummy node is 1) IAj(0) = 1
Vg ePRjJ eTUF IAj{t) = IAj{t - 1) + E ORLFgj{t)

Q

lAj helps to enforce precedence constraint. When lAj becomes equal to TJ,
the activity can be assigned.

Activation function
Activity nodes' initial activation state (i.e. at t=0) is I, \/j eT

eAj{t) =

IAj{t)<Tj

{9Aj{t - 1) - 1 V 2) A IAj{t) = Tj

{9Aj{t - 1) - 2 V 3) A ORLRjit) < 0

{eAj{t - 1) - 4 V {OAjit - 1) =z 3 A ORLRjit) = 0)

Note: For the initial dummy node, TJ — 1
State 1 above implies that activity j is not ready to be assigned because input

to activity j is less than its threshold r. State 2 implies that activity j is ready
to be assigned because its input equals its threshold. State 3 implies that the
activity is in process because it is receiving a negative signal from the resource
layer that it is currently being processed. State 4 implies that the activity is
complete and the negative signal from the resource layer is no longer there.

Output function

OAj{t) =
1 if OAjit) = 2

0 otherwise

If an activity is ready to start but not assigned yet, it sends a unit signal to the
resource layer.

308 PERSPECTIVES IN MODERN PROJECT SCHEDULING

F-Node

OAAt) -
t\fIAF{t) = rj
0 otherwise

The final node outputs the makespan t, the moment its threshold point is reached.

12.4.3,2 Resource layer functions. Input, activation and output func­
tions of resource layers are now explained.

Input function
Vj G A IRLAj{t) = OAj{t) * LVj
This is the weighted output from activity node j . Whenever it is positive, it

means that the resources are being requested by activity j for assignment.
\/jeAkeR IRLRLjk{t) - ^ ORLLpjk

pe SOP

Activation function
LtiXj{t) == IRI^ji^) "^TaskHeuristicParametevj
Let RAvj(t): Whether resources for activity] are available or not

RAv(t) = 1 ^ if V/c G i? (6fc - IRLRLjk > rjk)
1 0 otherwise

1 if RAvj{t) = lA

assigujit) = { xj{t) - max[xj(t)|A^- G 5(i)] A Vj G A Xj{t) > 0

0 otherwise

The assignment takes place if the product of Input of the resource layer
and the Heuristic dependent activity parameter is positive and highest and if
the resources are available. The requirement for highest is what enforces the
chosen heuristic.

TaskHeuristicParameter is a task parameter dependent on the chosen heuris­
tic.

' TRPT

LFT

EST

EFT

LST

RND

TaskHeuristicParameter

for T i ? P r heuristic

for LFT heuristic

for £;5T heuristic

for EFT heuristic

for LST heuristic

for i?AA^J90M heuristic
If assignj{t) — 1, then STj — t.
If \S{t)\ > Ithen Wm -̂ -= 1.
Resource layers' Initial Activation State (i e. a t t - 0) i s 1. Vz G MJ eT,

Resource Constrained Project Scheduling: A Hybrid Neural Approach 309

eRLj{t) = \ '

if RAvj{t) = 1

2 if 0RLj{t - 1) = 1 V 6RLj{t) = 1) A assignj{t) = 1

3 if {eRLj{t-l) = 2\/Z)M<STj + PTj:

4 if ORLj {t-l) = 3At^STj + PTj

State 1 implies that the resources are available. State 2 implies that the
resources are busy and that they were just assigned. State 3 implies that the
resources are busy and state 4 implies that the resources were just released.

Output function
if ORLjit) = 4
if ORLjit) = 1,2,3

^̂ ̂ I 0 neRLjit) = iA

The output of F represents the makespan and the assignj (t) gives the sche­
dule. If a resource is either assigned or released during a certain time unit, all
functions need to be recalculated without incrementing the time period.

12.4.4 Learning Strategy
A learning strategy is required to modify the weights. In this study we used

the following learning strategy:
Winning activities:
If Vj G A Wiuj = 1 then (c<;j)/e+i = {^j)k — o; * TaskParameterj * e^
Non-winning activities:
If Vj E A Wiuj = 0 then {ujj)k-^i = {ujj)k + oi ^TaskParameterj * Sk
In addition to these weight changes in each iteration, we propose two addi­

tional features that govern learning, namely, reinforcement and backtracking.
These features are explained here briefly.

Reinforcement:
Neural Networks use the concept of positive reinforcement of weights if the

network performs well. We implement this idea of reinforcement by imple­
menting the following rule. If in a particular iteration the makespan improves,
the weight changes of that iteration with respect to the previous iteration are
magnified by a factor called the reinforcement factor (RF).

310 PERSPECTIVES IN MODERN PROJECT SCHED ULING

Backtracking:
Sometimes it is possible to not obtain any improvement over several itera­

tions. When this happens, it is best to abandon that search path and start over
from the previous best solution weights. We can parameterize how many it­
erations of no improvement to tolerate. This backtracking technique was part
of our learning strategy. In order to do this, we store the set of weights cor­
responding to the best solution obtained so far and revert back to it whenever
solution does not improve for some iterations.

12.4.5 End of iteration routines
1 Calculate the gap which is the difference between obtained makespan

and the lower bound

2 Store the best solution so far.

3 If the lower bound is reached, stop the program.

4 If the number of iterations exceeds a certain specified number, such as
1000 or 5000, stop the program.

5 If continuing with the next iteration, modify weights using the learning
strategy. Apply backtracking and reinforcement, whenever necessary.

12.5 Computational experiments and results

We now present the result of the computational tests and compare them with
the best published algorithms. The HNA approach algorithms were coded in Vi­
sual Basic 6.0 and run on a Celeron 2300 MHz personal computer. Well known
benchmark problem instance sets (Kolisch et al (1995) and Kolisch and Sprecher
(1996)) are used to evaluate the algorithm (PSPLIB, http://www.bwl.uni-kiel.de
/Prod/psplib/ index.html). The sets J30 and J60 consists of 480 problem in­
stances with four resource types and 30 and 60 activities, respectively. The
set J120 consists of 600 problem instances with four resource type and 120
activities.

In our implementation, the learning coefficient a is set to 0.001 and the
weights are initialized at 10. An initial solution is generated using a priority
rules such as LFT or EST. The weights are modified after each iteration, using
the learning strategy. The stopping criterion is to stop if the solution is equal
to the lower bound or if a predetermined number of maximum schedules is
reached. We set the maximum number of schedules to 1000 and 5000.

Tables 16.1 through 16.3 display the results obtained by our algorithm and
other tested heuristics for 1,000 and 5,000 schedules, respectively. In these

Resource Constrained Project Scheduling: A Hybrid Neural Approach 311

Table 12,1. Percent Average Deviations from the Optimum Solution: Comparative Results for
the J30 Problems

Algorithm

Sampling-LFT-FBI

GA - FBI

HNA - FBI

Sampling - LFT - FBI

GA - hybrid, FBI

Scatter Search - FBI

GA - FBI

GA - FBI

GA - Self adapting

SA - Activity List

TS - Activity List

Sampling - FBI

GA - Activity List

Adaptive Sampling

GA

Adaptive Sampling

Sampling - Global

TS

GA - Random Key

GA - Priority Rule

Sampling - WCS

Sampling - LFT

Sampling - random

Sampling - random

GA

SOS

both

both

both

both

serial

serial

serial

serial

both

serial

serial

serial

serial

both

serial

both

serial

serial

serial

parallel

parallel

serial

parallel

Reference

Tormos and Lova (2003)

Alcaraz et al (2004)

this paper

Tormos and Lova (2001)

Vails et al (2003)

Debels et al (2004)

Alcaraz and Maroto (2001)

Vails et al (2005)

Hartmann (2002)

Bouleimen and Lecocq (2003)

Nonobe and Ibaraki (2002)

Vails et al (2005)

Hartmann (1998)

Schirmer (2000)

Coelho and Tavares (2003)

Kolisch and Drexl (1996)

Coelho and Tavares (2003)

Baaretal(1997)

Hartmann (1998)

Hartmann (1998)

Kolisch (1996b)

Kolisch (1996b)

Kolisch (1995)

Kolisch (1995)

Leon and Ramamoorthy (1995)

of Schedules

1,000

0.23

0.25

0.25

0.25

0.27

0.27

0.33

0.34

0.38

0.38

0.46

0.46

0.54

0.65

0.74

0.74

0.81

0.86

1.03

1.38

1.40

1.40

1.44

1.77

2.08

5,000

014

0.06

0.11

0.15

0.06

0.11

0.12

0.20

0.22

0.23

0.16

0.28

0.25

0.44

0.33

0.52

0.54

0.44

0.56

1.12

1.28

1.29

1.00

1.48

1.59

tables we present the type of heuristics, the type of schedule generation scheme
used, the authors of each heuristic and the average deviation from the criti­
cal path based lower bound (from the optimal solution for J30 instances) for
1000 and 5000 schedules, respectively. In each table, the heuristics are sorted
according to descending performance with respect to 1000 schedules.

Table 16.1 presents the percentage deviations from the optimal makespan
for the instance set J30 in which all problem instances have been solved to
optimality by Demeulemeester and Herroelen (1997) branch and bound pro­
cedure. Our algorithm solved 448 out of 480 problems to optimality and the

312 PERSPECTIVES IN MODERN PROJECT SCHEDULING

average deviation from the optimal solution is just 0.25 and 0.11 percent for
1000 schedules and 5000 schedules, respectively.

Table 12.2. Percent Average Deviations from the Critical-Path-Based Lower Bound: Compar­
ative Results for the J60 Problems

#of
Algorithm SGS Reference 1,000

Schedules

5,000

GA - hybrid, FBI

HNA - FBI
Scatter Search - FBI

GA - FBI

Sampling-LFT-FBI

Sampling - LFT - FBI

GA - FBI

GA - Self adapting

GA - FBI

GA - Activity List

Sampling - FBI

SA - Activity List

Adaptive Sampling

TS - Activity List

GA

GA - Priority Rule

Adaptive Sampling

Sampling - LFT

Sampling - WCS

Sampling - Global

TS

GA

GA - Random Key

Sampling - random

Sampling - random

serial

both

serial

both

both

both

serial

both

serial

serial

serial

serial

both

serial

serial

serial

both

parallel

parallel

serial

serial

parallel

serial

Vails et al (2003)

this paper

Debels et al (2004)

Alcaraz et al (2004)

Tormos and Lova (2003)

Tormos and Lova (2001)

Vails et al (2005)

Hartmann (2002)

Alcaraz and Maroto (2001)

Hartmann (1998)

Vails et al (2005)

Bouleimen and Lecocq (2003)

SchirmerOO

Nonobe and Ibaraki (2002)

Coelho and Tavares (2003)

Hartmann (1998)

Kolisch and Drexl (1996)

Kolisch (1996b)

Kolisch (1996b)

Coelho and Tavares (2003)

Baaretal(1997)

Leon and Ramamoorthy (1995)

Hartmann (1998)

Kolisch (1995)

Kolisch (1995)

11.56

11.72

11.73

11.89

12.04

12.11

12.21

12.21

12.57

12.68

12.73

12.75

12.94

12.97

13.28

13.30

13.51

13.59

13.66

13.80

13.80

14.33

14.68

14.89

15.94

11.10

11.39
11.10

11.19

11.72

11.82

11.27

11.70

11.86

11.89

12.35

11.90

12.59

12.18

12.63

12.74

13.06

13.23

13.21

13.31

13.48

13.49

13.32

14.30

15.17

For J60 problems set, some of the optimal solutions are not known, so we
measure the average percentage deviation from the critical-path based lower
bound for comparison purposes. Table 16.2 summarizes the results for J60
test instances. 295 out of 480 instances are solved to critical path based lower
bound. The average deviation from the critical path based lower bound is n.72
and 11.39 percent for 1000 and 5000 schedules, respectively.

Resource Constrained Project Scheduling: A Hybrid Neural Approach 313

Table 12.3. Percent Average Deviations from the Critical-Path-Based Lower Bound: Compar­
ative Results for the J120 Problems

#of
Algorithm SGS Reference 1,000

Schedules

5,000

GA - hybrid, FBI

HNA - FBI

Scatter Search - FBI

GA - FBI

Sampling - LFT - FBI

Sampling - LFT - FBI

GA - FBI

GA - Self adapting

Sampling - FBI

GA - FBI

GA - Activity List

Sampling - LFT

Sampling - WCS

Adaptive Sampling

GA - Priority Rule

GA

TS - Activity List

Sampling - Global

Adaptive Sampling

SA - Activity List

Sampling - LFT

GA

Sampling - random

GA - Random Key

Sampling - random

serial

both

serial

serial

both

both

both

both

serial

serial

serial

parallel

parallel

both

serial

serial

serial

serial

both

serial

Serial

parallel

serial

serial

Vails et al (2003)

this paper

Debels et al (2004)

Vails et al (2005)

Tormos and Lova (2003)

Tormos and Lova (2001)

Alcaraz et al (2004)

Hartmann (2002)

Vails et al (2005)

Alcaraz and Maroto (2001)

Hartmann (1998)

Kolisch (1996b)

Kolisch (1996b)

Schirmer (2000)

Hartmann (1998)

Coelho and Tavares (2003)

Nonobe and Ibaraki (2002)

Coelho and Tavares (2003)

Kolisch and Drexl (1996)

Bouleimen and Lecocq (2003)

Kolisch (1996b)

Leon and Ramamoorthy (1995)

Kolisch (1995)

Hartmann (1998)

Kolisch (1995)

34.07

34.94

35.39

35.98

35.98

36.32

36.53

37.19

38.21

39.36

39.37

39.60

39.65

39.85

39.93

39.97

40.86

41.36

41.37

42.81

42.84

42.91

44.36

45.82

49.25

32.54

34.57

33.24

35.30

35.30

35.30

33.91

35.39

37.47

36.57

36.74

38.75

38.77

38.70

38.49

38.41

37.88

40.46

40.45

37.68

41.84

40.69

43.05

45.25

47.61

Table 16.3 summarizes the results for J120 set. 155 out of 600 problems
matched the critical path based lower bound. The average deviations are 34.94
and 34.57 percent, respectively, for 1000 and 5000 schedules.

12,6 Conclusions
We proposed, developed and tested a new metaheuristic approach based

on the principles of neural networks. Augmented-neural-network approach
was used for parallel schedule generation and adaptive-learning approach for

314 PERSPECTIVES IN MODERN PROJECT SCHED ULING

serial schedule generation scheme. We called this approach the hybrid neural
approach (HNA), To the best of our knowledge, this is the first time that neural-
networks based metaheuristics have been applied to the RCPSP. So, research in
this approach is still in its infancy. We tested this approach on some well-known
RCPSP benchmark problem instances in the literature. The computational
results are very encouraging as they compare very well with some of the best
results in the literature from techniques such as tabu search, simulated annealing,
genetic algorithms and scatter search. The approach, in spite of being relatively
new, gave very good results, and therefore appears to be very promising and
worthy of further exploration.

Future research may focus on developing some hybrid approaches involving
the HNA approach and some of the other successful approaches such as genetic
algorithms and scatter search, to further improve the results. This new approach
should also be applied to multi-mode resource constrained project scheduling
problems with renewable and non-renewable resources.

References
Agarwal, A., Jacob, V.S. and Pirkul, H. (2003). Augmented neural networks for

task scheduling, European Journal of Operational Research, 151(3):481-
502.

Agarwal, A., Colak, S. and Eryarsoy, E. (2005). Improvement heuristic for the
flow-shop scheduling problem: an adaptive-learning approach, European
Journal of Operational Research, 169(3):801-815.

Alcaraz, J. and Maroto, C. (2001). A robust genetic algorithm for resource
allocation in Project Scheduling, Annals of Operations Research. 102:83-
109.

Alcaraz, J., Maroto, C. and Ruiz, R. (2004). Improving the performance of
genetic algorithms for the RCPS problem. Proceedings of the Ninth Interna­
tional Workshop on Project Management and Scheduling, pp. 40-43.

Alvares-Valdes, R. and Tamarit, J.M. (1989). Heuristic algorithms for resource-
constrained project scheduling: A review and an empirical analysis, in: Ad­
vances in Project Scheduling, R. Slowinski, J. Weglarz (Eds.), Elsevier, Am­
sterdam, pp. 113-134.

Baar, T., Brucker, P. and Knust, S. (1997). Tabu search algorithms for resource-
constrained project scheduling problems, in: Metaheuristics: Advances and
Trends in Local Search Paradigms for Optimisation, S. Voss, S. Martello, I.
Osman, C. Roucairol (Eds.), Kluwer, pp. 1-18.

Blazewicz, J., Lenstra, J.K. andRinnooy Kan A.H.G. (1983). Scheduling projects
to resource constraints: classification and complexity. Discrete Applied Math­
ematics. 5:11-24.

Resource Constrained Project Scheduling: A Hybrid Neural Approach 315

Boctor, F.F. (1990). Some efficient multi-heuristic procedures for resource-
constrained project scheduling, European Journal of Operational Research
49:3-13.

Boctor, F.F. (1996). An adaptation of the simulated annealing algorithm for solv­
ing resource-constrained project scheduling problems, International Journal
of Production Research, 34:2335-2351.

Bouleimen, K. and Lecocq, H. (2003). A new efficient simulated annealing algo­
rithm for the resource-constrained project scheduling problem and its multi­
ple mode version, European Journal of Operational Research, 149:268-281.

Brucker, P., Knust, S., Schoo, A. and Thiele, O. (1998). A branch & bound al­
gorithm for the resource-constrained project scheduling problem, European
Journal of Operational Research 107(2):272-288.

Brucker, P., Drexl, A., Mohring, R., Neumann, K. andPesch, E. (1999). Resource-
constrained project scheduling: notation, classification, models, and meth­
ods, European Journal of Operational Research, 112(1):3-41.

Christofides, N., Alvarez-Valdes, R. and Tamarit, J.M. (1987). Project schedul­
ing with resource constraints: a branch-and-bound approach, European Jour­
nal of Operational Research 29(2):262-273.

Cho, J.H. and Kim, Y.D. (1997). A simulated annealing algorithm for resource-
constrained project scheduling problems, Journal of the Operational Re­
search Society, 48:736-744.

Coelho, J. and Tavares, L. (2003). Comparative analysis of meta-heuricstics
for the resource constrained project scheduling problem. Technical report.
Department of Civil Engineering, Instituto Superior Tecnico, Portugal.

Cooper, D.F. (1976). Heuristics for scheduling resource-constrained projects:
An experimental investigation. Management Science 22:1186-1194.

Davis, E.W. and Heidom, G.E. (1971). An algorithm for optimal project schedul­
ing under multiple resource constraints. Management Science 17:803-816.

Davis, E.W. and Patterson, J.H. (1975). A comparison of heuristic and optimum
solutions in resource-constrained project scheduling. Management Science,
21:944-955.

Debels, D., De Reyck, B., Leus, R. and Vanhoucke, M. (2006). A hybrid scatter
search/electromagnetism meta-heuristic for project scheduling, European
Journal of Operational Research 169(2):638-653.

Demeulemeester, E. and Herroelen, W. (1992). A branch-and-bound procedure
for the multiple resource-constrained project scheduling problems. Manage­
ment Science, 38(12):1803-1818.

Demeulemeester, E. and Herroelen, W. (1997). New benchmark results for
the resource-constrained project scheduling problem. Management Science
43(11): 1485-92.

316 PERSPECTIVES IN MODERN PROJECT SCHED ULING

Domdorf, U., Pesch, E. and Phan-Huy, T. (2000). A branch-and-bound algo­
rithm for the resource-constrained project scheduling problem, Mathematical
Methods of Operations Research, 52:413-439.

Drexl, A. (1991). Scheduling of project networks by job assignment, Manage­
ment Science. 37:1590-1602.

Foo, Y.P.S. and Takefuji, Y. (1988). Stochastic neural networks for solving job-
shop scheduling. Proceedings of Joint International Conference on Neural
Networks Vol 2, pp. 275-290.

Hartmann, S. (1998). A competitive genetic algorithm for the resource-constrained
project scheduling, Naval Research Logistics, 45:733-750.

Hartmann, S. (2002). A self-adapting genetic algorithm for project scheduling
under resource constraints. Naval Research Logistics. 49:433-448.

Hartmann, S. and Kolisch, R. (2000). Experimental evaluation of state-of-
the-art heuristics for the resource-constrained project scheduling problem,
European Journal of Operational Research 127:394-407.

Herroelen, W., Demeulemeester, E. and De Reyck, B. (1998). Resource- con­
strained project scheduling: A survey of recent developments. Computers &
Operations Research 25(4):279-302.

Hindi, K. S., Yang H. and Fleszar, K. (2002). An evolutionary algorithm for
resource-constrained project scheduling, IEEE Transactions on Evolutionary
Computation. 6:512-518.

Hopfield, J.J. and Tank, D.W. (1985). Neural computation of decisions in opti­
mization problems. Biological Cybernetics. 52:141-152.

Icmeli, O., Erenguc, S.S. and Zappe, C.J. (1993). Project scheduling problems:
A survey. International Journal of Operations & Production Management
13(11):80-91.

Kolisch, R. (1995). Project scheduling under resource constraints: efficient
heuristics for several problem classes, Physica, Heidelberg, Germany.

Kolisch, R. (1996a). Efficient priority rule for the resource-constrained project
scheduling problem. Journal of Operations Management. 14(3): 179-192.

Kolisch, R. (1996b). Serial and parallel resource-constrained project scheduling
methods revisited: theory and computation, European Journal of Operational
Research 90:320-333.

Kolisch, R. and Drexl, A. (1996). Adaptive search for solving hard project
scheduling problems. Naval Research Logistics. 43:23^0.

Kolisch, R. and Hartmann, S. (2005). Experimental investigation of heuristics
for resource-constrained project scheduling: An update, European Journal
of Operational Research, forthcoming.

Kolisch, R. and Padman, R. (2001). An integrated survey of deterministic project
scheduling, OMEGA. 29:249-272.

Kolisch R. and Sprecher, A. (1996). PSPLIB - A project scheduling problem
library. European Journal of Operational Research, 96(1):205-216.

Resource Constrained Project Scheduling: A Hybrid Neural Approach 317

Kolisch, R., Sprecher, A, and Drexl, A. (1995). Characterisation and genera­
tion of a general class of resource-constrained project scheduling problem,
Management Science, 41(10): 1693-1703.

Lee, J.K. and Kim, Y.D., 1996, Search heuristics for resource-constrained
project scheduling. Journal of the Operational Research Society, 47:678-
689.

Leon, V.J. and Ramamoorthy, B. (1995). Strength and adaptability of problem-
space based neighborhoods for resource-constrained scheduling, OR Spek-
trum, 17:173-182.

Mingozzi, A. , Maniezzo, V,, Ricciardelli, S. and Bianco, L. (1998). An exact
algorithm for project scheduling with resource constraints based on new
mathematical formulation. Management Science, 44(5):714-29.

Merkle, D., Middendorf, M. and Schmeck H. (2002). Ant colony optimization
for resource-constrained project scheduling, IEEE Transactions on Evolu­
tionary Computation. 6:333-346.

Nonobe, K. and Ibaraki, T. (2002). Formulation and tabu search algorithm for
the resource constrained project scheduling problem, in: Essays and Sur­
veys in Metaheuristics, C. C. Ribeiro and R Hansen, eds, Kluwer Academic
Publishers, pp. 557-588.

Ozdamar, L. and Ulusoy, G., (1994). A local constraint based analysis approach
to project scheduling under general resource constraints, European Journal
of Operational Research, 79:287-298.

Ozdamar, L. and Ulusoy, G. (1995). A survey on the resource-constrained
project scheduling problem, HE Transactions. 27:574-586.

Patterson, J.H. and Huber, W.D. (1974). A horizon-varying, zero-one approach
to project scheduling. Management Science 20:990-998.

Patterson, J.H. and Roth, G.W., 1976, Scheduling a project under multiple re­
source constraints: a zero-one programming approach, AIIE Transactions.
8:449-55.

Pinson, E., Prins, C. and Rullier, F. (1994). Using tabu search for solving the
resource-constrained project scheduling problem, in: Proceedings of the 4th
International Workshop on Project Management and Scheduling, Leuven,
Belgium, pp. 102-106.

Pritsker, A.A.B., Watters, L.J. and Wolfe, P.M. (1969). Multiproject schedul­
ing with limited resources: a zero-one programming approach. Management
Science 16: 93-107.

Sabuncuoglu, I. and Gurgun, B. (1996). A neural network model for scheduling
problems, European Journal of Operational Research 93:288-299.

Schirmer, A. and Riesenberg, S. (1998). Class-based control schemes for pa­
rameterized project scheduling heuristics, Manuskripte aus den Instituten fur
Betriebswirtschaftslehre 471, Universitat Kiel, Germany.

318 PERSPECTIVES IN MODERN PROJECT SCHED ULING

Schirmer, A. (2000). Case-based reasoning and improved adaptive search for
project scheduling, Naval Research Logistics.47:201-222.

Talbot, F.B, and Patterson, J.H. (1978). An efficient integer programming algo­
rithm with network cuts for solving resource constrained scheduling prob­
lems, Management Science, 24(11): 1163-74.

Thomas, P. R. and Salhi, S. (1998). A tabu search approach for the resource
constrained project scheduling problem. Journal of Heuristics, 4:123-139.

Toklu, Y.C. (2002). Application of genetic algorithms to construction schedul­
ing with or without resource constraints, Canadian Journal of Civil Engi­
neering. 29:421-429.

Tormos, P. and Lova, A,, 2001, A competitive heuristic solution technique for
resource constrained project scheduling, Annals of Operations Research.
102:65-81.

Tormos, P. and Lova, A. (2003). An efficient multi-pass heuristic for project
scheduling with constrained resources, International Journal of Production
Research. 4l(5):l07l~l086.

Ulusoy, G. and Ozdamar, L. (1989). Heuristic performance and network/ re­
source characteristics in resource-constrained project scheduling. Journal of
the Operational Research Society. 40:1145-1152.

Vails, v., Ballestin, F. and Quintanilla, M. S. (2003). A hybrid genetic algorithm
for the RCPSP, Technical report, Department of Statistics and Operations
Research, University of Valencia.

Vails, V, Ballestin, F. and Quintanilla M. S. (2005). Justification and RCPSP: A
technique that pays, European Journal of Operational Research. 165(2): 375-
386.

