INFORMS Journal on Computing

Vol. 18, No. 1, Winter 2006, pp. 119-128
15SN 1091-9856 | 15SN 1526-5528 | 06 | 1801|0119

1orms})

Do110.1287 /ijoc.1040.0108
©2006 INFORMS

An Improved Augmented Neural-Network
Approach for Scheduling Problems

Anurag Agarwal

Department of Decision and Information Sciences, Warrington College of Business Administration,
University of Florida, Gainesville, Florida 32611-7169, USA, aagarwal@ufl.edu

Varghese S. Jacob, Hasan Pirkul

School of Management, University of Texas at Dallas, Richardson, Texas 75083-0688, USA
{vjacob@utdallas.edu, hpirkul@utdallas.edu}

For the task-scheduling problem, we propose an augmented neural-network approach, which allows the
integration of greedy as well as nongreedy heuristics (AugNN-GNG), to give improved solutions in a small
number of iterations. The problem we address is that of minimizing the makespan of n tasks on m identical
machines (or processors), where tasks are nonpreemptive and follow a precedence order. The proposed approach
exploits the observation that a nongreedy search heuristic often finds better solutions than do their greedy
counterparts. We hypothesize that combinations of nongreedy and greedy heuristics when integrated with
an augmented neural-network approach can lead to better solutions than can either one alone. We show the
formulation of such integration and provide empirical results on over a thousand problems. This approach
is found to be very robust in that the results were not very sensitive to the type of greedy heuristic chosen.
The new approach is able to find solutions, on average, within 1.8% to 2.8% of the lower bound compared
to 2.0% to 8.3% for the greedy-only AugNN approach. This improvement is obtained without any increase in

Downloaded from informs.org by [131.247.30.78] on 16 May 2016, at 16:00 . For personal use only, all rights reserved.

computational complexity. In fact the number of iterations used to find the solution decreased.

Key words: production scheduling; heuristics; neural networks
History: Accepted by Michel Gendreau, Area Editor for Heuristic Search and Learning; received June 2002;

revised April 2003; accepted September 2003.

1. Introduction and Motivation

The resource-constrained task-scheduling problem is
at the heart of many scheduling problems. The prob-
lem involves finding the minimum makespan sched-
ule for n tasks on m identical machines (or processors,
or resources), where tasks have precedence constraints
and cannot be preempted. Variations of this type of
problem are routinely found in production and com-
puting environments. For example, the open-shop,
the flow-shop, and the job-shop scheduling prob-
lems are extensions of the basic resource-constrained
task-scheduling problem. This type of problem also
appears in a distributed computing environment. The
resource-constrained project-management problem is
also a variation of the task-scheduling problem. For
a review of applications of task-scheduling problems,
see Rinnooy Kan (1976) and Coffman (1976). Any
improvements in the solution procedure of the task-
scheduling problem will likely lead to improvements
in a variety of other scheduling problems. We apply a
hybrid approach of heuristics and neural networks to
find improved solutions for this resource-constrained
task-scheduling problem. The focus is on integrating
greedy as well as nongreedy heuristics with neural
networks to obtain improved solutions.

RIGHTS L

119

The scheduling literature is replete with a variety of
solution procedures for a variety of scheduling prob-
lems. A host of single-pass heuristic approaches, as
well as iterative approaches have been proposed. See
Sabuncuoglu (1998) for a review of the use of neural
networks in scheduling. More recently, Agarwal et al.
(2003) proposed a framework called augmented neural-
network (AugNN), which allows the integration of vari-
ous greedy heuristics with neural networks. This frame-
work exploits the advantages of both the heuristics and
the neural-network approaches. The heuristicapproach
finds a good single-iteration solution quickly, while
the neural-network approach allows iterative adaptive
learning. The AugNN approach is shown to be effec-
tive even for large problems (100 tasks) and has the
computational complexity of O(n? + nm), which is the
same as that of most greedy heuristics for this prob-
lem. Significant improvements over single-pass heuris-
tics were reported in just 50 or so iterations. Most iter-
ative approaches such as genetic algorithms, simulated
annealing, traditional neural networks, tabu search etc.,
require thousands of iterations and therefore are effec-
tive only for small problems.

This study was motivated by the observation that
for many problems, a nongreedy heuristic may some-
times find a better solution than a greedy heuristic.

Downloaded from informs.org by [131.247.30.78] on 16 May 2016, at 16:00 . For personal use only, all rights reserved.

Agarwal, Jacob, and Pirkul: An Improved Augmented Neural-Network Approach for Scheduling Problems

120

INFORMS Journal on Computing 18(1), pp. 119-128, © 2006 INFORMS

The problem is how to integrate the two approaches,
i.e.,, greedy and nongreedy, to obtain the best possi-
ble solution. Because iterative approaches generally
provide better solutions, as long as the number of
iterations is reasonable (less than 100), the extra com-
puting time may be worth the improvement. Because
AugNN gives good results in just a few iterations,
we focus on integrating nongreedy heuristics, along
with greedy heuristics to neural networks using the
AugNN framework.

Using the proposed algorithms, we were able to
obtain solutions, on average, within 1.8% to 2.8%
of the lower bound for various heuristics, compared
to 2.0% to 8.3% obtained from greedy-only AugNN
for the same set of problems. While the greedy-only
approach was sensitive to the type of greedy heuris-
tic used, the new approach works quite well with
any heuristic. Hereafter, we will call this approach
AugNN-GNG (for AugNN with greedy and non-
greedy heuristics combined).

This study contributes to the scheduling literature.
First, it proposes near-optimal robust algorithms for
an important class of scheduling problems. Second,
it develops strategies for combining nongreedy and
greedy heuristics and empirically demonstrates the
effectiveness thereof. Third it extends the AugNN lit-
erature for scheduling by proposing (i) extensions to
the architecture of neural networks, (ii) new learning
rules, and (iii) new iteration schemes.

In Section 2, we describe the task-scheduling prob-
lem and analyze it. The scheduling problem is
reduced to two decision problems—prioritization and
wait. We discuss local and look-ahead strategies to
tackle the two decision problems and set the stage for
comparing greedy and nongreedy heuristics. A spe-
cific instance of the problem is used for illustration. In
Section 3, we provide a literature survey for schedul-
ing problems. Section 4 briefly describes the AugNN
approach, enough to understand our extensions. The
details of the AugNN approach are in the online sup-
plement to this paper on the journal’s website. We
then describe how the AugNN approach is modified
or extended in this paper. Computational complex-
ity is also discussed. In Section 5, empirical results
are reported and discussed. Section 6 discusses a few
issues related to neural network training and exten-
sions of this approach to other scheduling problems.
Finally, Section 7 provides a summary, conclusions,
and suggestions for further research.

2. The Problem and Its Analysis

We first briefly explain greedy versus nongreedy
search heuristics. At every step, a greedy search
heuristic selects the best choice available at that step
without regard to future consequences (Gass and

RIGHTS L

Harris 2001). Nongreedy heuristics entertain the idea
that what is best at each step may not be the best
for the entire problem. For example, a typical greedy
heuristic for a traveling salesman problem is to visit
the nearest neighboring unvisited city with no regard
to the overall map of cities. While this strategy may
generate an optimal subtour in the beginning, it may
result in long paths towards the end of the tour.
A nongreedy heuristic would not necessarily choose
to visit the nearest city, realizing that other options
might actually result in a better overall solution.
Greedy algorithms are easier to implement, as they
simply make a series of local decisions. Nongreedy
heuristics need more problem-specific knowledge to
make choices at each step.

The problem we address is scheduling n tasks on
m identical machines (or processors). Tasks are not
independent because they follow a precedence order.
Further, tasks are nonpreemptive, which implies that
once assigned, they must go through to completion.
The objective is to minimize the makespan (or the
completion time). An instance of such a problem is
described in Figure 1. There are nine tasks and two
machines. The task graph shows the precedence rela-
tionships. Processing times are shown inside the task
nodes.

We now analyze the task-scheduling problem and
reduce it to two decision problems. At any point, a
task can be in one of four states: (1) “Not Ready”
for assignment because of precedence constraints,
(2) “Ready” for assignment, (3) “Assigned and In-
process” and (4) “Completed.” If a task is in one of
states 1, 3 or 4, there is no assignment decision to

Figure 1 An Example Task Graph of a Task-Scheduling Problem

Downloaded from informs.org by [131.247.30.78] on 16 May 2016, at 16:00 . For personal use only, all rights reserved.

Agarwal, Jacob, and Pirkul: An Improved Augmented Neural-Network Approach for Scheduling Problems

INFORMS Journal on Computing 18(1), pp. 119-128, © 2006 INFORMS

121

be made because either the decision has already been
made or cannot be made yet. State 2 requires some
decision making.

Two scenarios are possible related to state 2. In
the first scenario, at any given time, there are fewer
machines available than the number of “Ready” tasks
(i.e., tasks in state 2). If the number of machines is
zero, there is no decision to be made. If the number of
machines is positive but less than the number of tasks
ready, then clearly we need a priority rule, criterion,
or heuristic, to assign tasks to a limited number of
machines. This is the prioritization decision problem.
Typically a greedy heuristic such as a highest-level-first
or longest-processing-time-first heuristic is used to settle
the priority.

In the second scenario, at any given time, there are
at least as many machines available as the number of
ready tasks. In other words, tasks do not have to com-
pete for limited resources. Greedy heuristics would
not treat this scenario as one requiring a decision, and
would assign all ready tasks to available machines.
However, a nongreedy approach would consider the
following possibility. Even though certain tasks are in
state 1 and therefore not competing for machines at a
given time, had they been competing they might have
been assigned a higher priority than some of the tasks
currently in state 2. Should such a possibility exist, it
would be prudent to treat a state 2 task of low prior-
ity as if it were still in state 1, and letting another state
1 task become a state 2 task and get assigned first. In
other words, a task may sacrifice its “Ready” state and
remain idle in spite of available resources for the sake
of other more critical tasks, in the hope of improving
the makespan. So we have the wait-decision problem,
i.e., whether to force a state 2 task to wait or not.

This nongreedy approach of considering whether to
force a task to wait would also help in the first sce-
nario in which the number of machines available is
less than the number of tasks ready to start. In this
situation, a task may be asked to “wait” to allow for
more critical tasks to become ready to start. We will
apply the nongreedy heuristic to all situations, i.e.,
whether we have more machines, the same number,
or fewer machines than the number of tasks ready to
start. Once tasks are allowed to be assigned, if the
number of machines is less than the number of tasks
allowed to be assigned, we face the prioritization-
decision problem. Intuitively, a task with a high slack
would be a strong candidate for a “wait” decision
especially if tasks with zero slack are about to become
“Ready” soon.

By addressing the “wait” decision problem, which
amounts to a nongreedy heuristic, for many problems
we got results better than those from greedy heuris-
tics. We hypothesize that an algorithm that addresses
both the prioritization and the wait decision problems
would provide better solutions than one that only

RIGHTS L

addresses one. For the prioritization decision, we pro-
pose any one of the many greedy heuristics in the
literature. For the wait-decision problem, we propose
a specific nongreedy heuristic. We then propose two
alternative strategies to combine the two approaches
using the AugNN framework.

The task graph of Figure 1 can also be used to
show how a nongreedy algorithm gives a better
solution than a greedy one. This example is due
to Ramamoorthy et al. (1972). The numbers inside
the circles indicate task numbers while those outside
indicate processing times in some unit of time (ut).
Assuming infinite resources, paths 1-2-4-7-9 and 1-2-
5-7-9 are critical. The minimum possible makespan
is 64 uts. Path 1-3-6-9 is obviously noncritical with a
slack of 51 uts. When task 3 is completed, task 6 is
ready to start (state 2), but only one ut later, tasks 4
and 5, both of which are on critical paths and cur-
rently in state 1, will become ready to start. Hence,
it is easy to see that it is advantageous to let task 6
wait and not tie up one of the two machines. Had
there been more than two machines, however, assign-
ment of task 6 without wait would not have made any
difference. Gantt charts in Figure 2 illustrate the two
schedules, with and without task 6 waiting. Sched-
ule (b), in which task 6 waited, resulted in a better
makespan than schedule (a), in which it did not wait.
This example clearly illustrates the advantage of let-
ting a noncritical task in state 2 wait.

3. Literature Review

Scheduling problems have been studied for a long
time. For a classification and a review of methods for
solving them see Graham et al. (1979) or Rinnooy Kan
(1976). Cheng and Sin (1990) also provide an excellent
summary of the results of algorithms for the various
scheduling problems. Casavant and Kuhl (1988) pro-
vide a taxonomy of scheduling problems. Potts and
Kovalyov (2000) provide a review of scheduling with
batching.

Hu (1961) pioneered the idea of heuristic appro-
aches for solving scheduling problems for the
identical-machine case with a task precedence rela-
tionship. He developed “level-scheduling” or “list-
scheduling,” a critical-path approach for greedy
heuristics. Panwalker and Iskander (1977) provide
a survey of dispatching rules. Adam et al. (1974)
also provide comparisons of various list schedules.
Examples of dispatching rules include SPT (shortest
path time), LPT (longest processing time), HLF (high-
est level first), HLETF (highest level with estimated
time first), LWKR (least work remaining), MWKR
(most work remaining), FCFS (first come first served),
MOR (most operations remaining), RANDOM etc.
Kasahara and Narita (1984, 1985) propose a varia-
tion of list scheduling called CP/MISF (critical path
with most immediate successors first) and show that

Downloaded from informs.org by [131.247.30.78] on 16 May 2016, at 16:00 . For personal use only, all rights reserved.

Agarwal, Jacob, and Pirkul: An Improved Augmented Neural-Network Approach for Scheduling Problems

122 INFORMS Journal on Computing 18(1), pp. 119-128, ©2006 INFORMS
0 1 3 23 32 72 73
Machine 1 1 2 4 idle 7 9
Machine 2 [idle | 3 6 55 8 idle
2 12 62
(a)
0 1 3 23 63 64
Machine 1 1 2 4 7 9
Machine 2 |idle | 3 |idle 5 8 6 idle
()
Figure 2 Gantt Chart Displaying Two Schedules for the Problem in Figure 1

Note. (a) Schedule where task 6 assigned right away—makespan 73 ut. (b) Schedule where task 6 waits—makespan 64 ut.

their method produces solutions very close to opti-
mal. Rajendran and Holthaus (1999) do a comparative
study of various dispatching rules in dynamic flow-
shops and job-shops.

Hopfield and Tank (1985) pioneered the applica-
tion of neural networks for solving combinatorial
optimization problems. Their approach is based on
defining and minimizing “energy” functions that cap-
ture the constraints and the objective function of the
problem. When the “energy” function converges to
a minimum, a good solution is found. Using this
novel approach, Hopfield and Tank (1985) solved
the traveling-salesman problem. Dahl (1987) used
a similar neural-network approach for solving the
graph-coloring problem.

Foo and Takefuji (1988a, b) were the first to apply
the Hopfield network for the job-shop-scheduling
problem. The problems they worked on, however,
were extremely small—a 2-job, 3-machine prob-
lem and the computational complexity was high
(O(m*n* + mn)). Satake et al. (1994) used a modified
Hopfield network to solve bigger problems, up to
14 jobs and seven machines. The computation time
remains poor at about 700 seconds for a 14 job,
seven-machine problem. Most recently, Sabuncuoglu
and Gurgun (1996) reported yet another variation of
the Hopfield network. Computational times, however,
remain very poor; for example, a 15-task 5-machine
problem took about 2,300 seconds to reach a near opti-
mum solution.

The Hopfield and Tank approach suffers from
some limitations. First, it is not satisfactory for large
problems because it often finds suboptimal local
minima. Most reported results are for extremely
small problems. The second limitation lies in the
problem formulation itself. Formulating the energy
function for an optimization problem incorporating
the various constraints is not straightforward and

RIGHTS LI L)

still remains an art. The third difficulty is com-
putational complexity. The existing Hopfield-neural-
network approaches take significant processing time
and thousands of iterations for convergence. For a
complete review of the application of neural net-
works in manufacturing see Zhang and Huang (1995).
For a review of machine learning in scheduling, see
Aytug et al. (1994) and Sabuncuoglu (1998). Machine-
learning techniques other than neural networks have
also been proposed in the literature. For example
Sakawa and Kubota (2000) use genetic algorithms for
scheduling problems with fuzzy processing times and
due dates. Candido et al. (1998) also use genetic algo-
rithms for job-shop problems. Steinhofel et al. (1999)
propose two simulated-annealing-based heuristics for
the job-shop problem. Miller et al. (1999) propose
a hybrid genetic-algorithm approach for a single-
machine scheduling problem.

Agarwal et al. (2003), proposed an augmented
neural-network approach that is a hybrid of greedy
heuristics and the neural-network approach. This
approach has been shown to work on large prob-
lems without any deterioration in the solution qual-
ity or the computational time taken. The AugNN
approach makes use of the properties of neural net-
works, yet is different from the prior neural-network
approaches used for solving optimization problems.
A critical feature of this approach is the one-to-one
correspondence between the problem structure and
the neural-network structure, thus allowing the neu-
ral network to be augmented by the relevant domain-
specific knowledge in solving the problem.

4. AugNN and AugNN-GNG

Because this paper extends the AugNN framework,
we briefly describe the framework and then explain
our GNG extension. Details of AugNN can be found
in the online supplement to this paper on the

Downloaded from informs.org by [131.247.30.78] on 16 May 2016, at 16:00 . For personal use only, all rights reserved.

Agarwal, Jacob, and Pirkul: An Improved Augmented Neural-Network Approach for Scheduling Problems

INFORMS Journal on Computing 18(1), pp. 119-128, © 2006 INFORMS

123

journal’s website or in Agarwal et al. (2003). The
AugNN approach, as previously mentioned, is a
hybrid of heuristic approaches and the neural-network
approach. A brief description of neural networks
follows.

Neural networks, in general, constitute a class of
artificial-intelligence learning techniques for nonlinear
transformation of some input (independent variables)
to an output (dependent variable). The transforma-
tion function is not a simple algebraic function, but
is embedded in the structure of the neural network,
which consists of what are called processing elements
(PEs). These PEs are arranged in three (or more)
layers—an input layer, one (or more) hidden layer(s),
and an output layer. PEs in one layer are linked (or
connected) to PEs in other layers or in the same layer
through links. These links have “weights” associated
with them, which factor into the transformation. With
the help of input, activation (or transfer), and output
functions associated with PEs and weights associated
with links, a neural network transforms an input to
some output. The weights are modified using a learn-
ing rule, such that the output becomes closer to the
desired value in subsequent iteration(s). The network
thus adaptively learns the transformation function to
produce the most desirable output.

The AugNN approach exploits this iterative adap-
tive learning scheme to find improved solutions to the
task-scheduling problem. It basically sets up a neural
network based on the task graph of the given prob-
lem so that each task and each machine becomes a PE.
See Figure 3 for an NN structure for a task-scheduling
problem. These PEs are assigned input, activation,
and output functions, and the links between PEs are
assigned weights in such a way that the network is
able to find a feasible solution to the task-scheduling
problem in one iteration. The heuristic is built into the
input and activation functions of the machine nodes.
Suitable “learning rules” are also proposed to modify
weights such that better makespans are generated in
subsequent iterations.

The mathematical formulation of the input, acti-
vation, and transfer functions for task and machine
nodes are given in the online supplement to this
paper. The input function of task nodes is designed
to count the number of predecessor tasks completed.
The activation function decides the state of the task.
The initial state for all tasks is 1. A task reaches state
2 when its input-function value equals its threshold
value, which equals the total number of predecessor
tasks. When a task is assigned to a machine, state 3
is reached and when it is completed, it attains state 4.
The output function of the task sends a positive unit
signal whenever the task is completed. The output of
the final node is the makespan.

The input function of the machine node is the sum
of three components. The first is the weighted output

RIGHTS L

from a ready task. Two others are inhibitory (large
negative) signals from other machines. The inhibitory
signals are designed to ensure that a machine can-
not be assigned to another task if it is already pro-
cessing a task, and that the task it is processing does
not get assigned to another machine. A task node
knows that it has been assigned to a machine when it
receives an inhibitory signal from the machine node
to which it is assigned. Absent such a signal, the task
will assume it is ready to start and may look for avail-
able machines. The activation function of the machine
node is in two parts. The first decides which machine
is assigned to which task. The greedy heuristic is
built into AugNN through this part of the activa-
tion function with the help of the TaskHeuristicParam-
eter. For example, the TaskHeuristicParameter for the
highest-level-first heuristic is the “level” of the task,
while that for the longest-processing-time heuristic is
the processing time of the task. Tasks compete for
limited machines based on the value of the activation
function, which in turn depends on the heuristic used.
The second part of the activation function decides the
state of a machine. A machine node can be in one
of six states: (1) available, (2) busy (just assigned), (3)
busy, (4) just released, (5) assigned to another task,
and (6) finished processing a task. The output func-
tion of a machine node fires a signal to the forward
task node whenever it is released, i.e., when its own
state becomes 4. It fires inhibitory signals to other
machines when it is assigned a task. With the help of
these functions, a single pass (iteration) generates a
feasible solution.

With this background on neural networks and the
AugNN framework for solving task-scheduling prob-
lems, we will now describe the changes proposed in
this paper. First we will describe how the nongreedy
heuristic is implemented, followed by how the greedy
and nongreedy heuristics are combined.

4.1. How Is the Nongreedy
Heuristic Implemented?

We propose three changes to the mathematical for-
mulation of the AugNN approach. First, we mod-
ify the conditions under which a task node goes
from state 1 to state 2 (recall that state 1 means “not
ready” while state 2 means “ready”). In the origi-
nal AugNN framework, in the activation function of
the task nodes, the only condition for a task to enter
state 2 was that all its preceding tasks had to be com-
pleted. We add another condition as follows:

(@nc);j- (t+LET;) > LST, +LET;, VieM,jeT

where (wy); is some nongreedy weight factor from
task j to machine i, with an initial value of 1, t is
the elapsed time, LST]- is the latest start time for the
task in question under an infinite-resource assump-
tion, and LET; is the “level with estimated time” or
the length of the longest remaining path, including

Downloaded from informs.org by [131.247.30.78] on 16 May 2016, at 16:00 . For personal use only, all rights reserved.

Agarwal, Jacob, and Pirkul: An Improved Augmented Neural-Network Approach for Scheduling Problems

124

INFORMS Journal on Computing 18(1), pp. 119-128, © 2006 INFORMS

Figure 3 The AugNN Network for the Example Problem of Figure 1

the processing time of task j. This additional condi-
tion (i.e., in addition to the obvious one that the pre-
ceding tasks should be completed), allows a task to
be assigned only if (wyg);; - (t +LET;) > LST; + LET ;.
To understand this condition, assume that (wyg); =1,
and that task j’s preceding tasks are complete and
t < LST;. This means that task j has some slack and
can wait for some time without affecting the overall

RIGHTS L

makespan. If { = LST;, then the current job becomes
critical and should not be allowed to wait. The role
of (wyg);; is to vary the likelihood of waiting in dif-
ferent iterations. If (wyg); > 1, then task j need not
wait till it becomes critical because (wyg);; - (t+LET))
might exceed LST;+LET before t equals LST . So, the
higher the (wyg);;, the lower the likelihood of forc-
ing a wait decision on a task. This new condition is

Downloaded from informs.org by [131.247.30.78] on 16 May 2016, at 16:00 . For personal use only, all rights reserved.

Agarwal, Jacob, and Pirkul: An Improved Augmented Neural-Network Approach for Scheduling Problems

INFORMS Journal on Computing 18(1), pp. 119-128, © 2006 INFORMS

125

implemented by adding a weight factor to the links
between machine nodes and task nodes and changing
the activation function for task nodes.

The second change is in the TaskHeuristicParameter
of the Activation function of the machine node. In the
greedy heuristic the TaskHeuristicParameter was one of
either LET (level with estimated time) or L (level) or
PT (processing time), etc. In the nongreedy heuris-
tic, we replace the TaskHeuristicParameter by t + LET.
In the nongreedy approach, we do not want to try
the various dispatching rules, but only one dispatch-
ing rule, LET. But we want to add the elapsed time
t to LET. The addition of elapsed time helps in giv-
ing higher priority to tasks that have consumed more
of their slack because as t approaches LST, the slack
approaches zero.

The third change deals with the learning rule of the
new weight factor. The weight factor is modified in
such a way that if “waiting” does not help the solu-
tion, then in subsequent iterations the weight will be
higher as a function of the error and processing time
of the task. By doing so, the probability of “wait” in
subsequent iteration is reduced. For each task,

(0nG)ks1 = (@n)i + Waitedy - a - PT - &

where k is the iteration number, ¢, is the error in
the kth iteration (between the obtained solution and
the lower bound), PT is the processing time of the
task, a is the learning rate, and Waited, is 1 if the
task waited in iteration k, and is 0 otherwise. In other
words, Waited, becomes 1 if the task remained in state
1 due to the added condition.

With the help of these three changes, a non-
greedy algorithm can be implemented using the
AugNN framework. Results using this nongreedy-
only AugNN were better than five out of six greedy-
only AugNN results. However, the results of the
best greedy heuristic (HLETF) were far superior to
the nongreedy approach. Can we do better than the
best greedy heuristic by combining it with the non-
greedy heuristic? Two alternative strategies are pro-
posed here. Both strategies worked better than greedy
or nongreedy alone, although one strategy appeared
to be more robust than the other.

4.2, Combining Greedy and Nongreedy Heuristics
In the first strategy, we retain the extra condition (dis-
cussed above) for a task to become a state 2 task, but
instead of using the TaskHeuristicParameter of the non-
greedy type, use the one for the greedy type. This
approach gave better results than a greedy or non-
greedy heuristic alone, for all six greedy heuristics
tried. The improvement, although statistically signifi-
cant, was not very high in magnitude.

Our second strategy was guided by the observa-
tion that when the nongreedy approach was used
alone, it gave the best solution in under 10 iterations
on average compared to about 23 for the greedy-

RIGHTS L

only heuristics. Recall that this best solution was bet-
ter than five out of six greedy heuristics’ best solu-
tion. So, for our second approach, we simply run the
first 10 iterations as nongreedy-only AugNN, and use
the best solution from these 10 iterations to run the
greedy-only algorithm for the remaining iterations.
Using the second strategy, the overall results were far
superior to any of the previous results, although for
one heuristic the first strategy worked better.

5. Empirical Work and Results

We use three sets of problems. There are 344 prob-
lems ranging in size from 10 tasks and 2 machines
to 100 tasks and 5 machines in each set. The process-
ing times for the first set were generated randomly
using a uniform distribution. For the other two sets,
the task graphs are the same but the processing times
are drawn from exponential and normal distributions.
So, there are a total of 1,032 problems. We will call the
three sets of problems the “uniform set,” the “normal
set,” and the “exponential set.” Table 1 summarizes
the distribution of these problems by size.

We ran several experiments on all three sets of
problems. We used six greedy heuristics, namely,
(1) highest level first (HLF), (2) highest level with esti-
mated time first (HLETF), (3) critical path with most
immediate successors first (CP/MISF), (4) shortest path
time (SPT), (5) longest processing time first (LPT), and
(6) RANDOM. These heuristics were implemented
using the appropriate TaskHeuristicParameter in the

Table 1 Size Distribution of Problems Used

Number of machines

Number of tasks 2 3 4 5

10 24 0 0 0
11 24 0 0 0
12 24 0 0 0
13 24 0 0 0
14 24 24 0 0
15 24 24 0 0
16 24 24 0 0
20 24 24 0 0
25 24 24 0 0
30 24 24 0 0
40 24 24 24 0
50 24 24 24 24
60 24 24 24 24
70 24 24 24 24
80 24 24 24 24
90 24 24 24 24
100 24 24 24 24
Total 408 312 168 144

Note. The total number of problems used for empirical work is 1,032.
A third of these have processing times from a uniform distribution,
a third from a normal distribution, and a third from an exponential
distribution.

Agarwal, Jacob, and Pirkul: An Improved Augmented Neural-Network Approach for Scheduling Problems

126 INFORMS Journal on Computing 18(1), pp. 119-128, ©2006 INFORMS
Table 2a Aggregate Results for the Uniform Set
Improvement Improvement
Greedy AugNN-GNG ~ AugNN-GNG Percent gap® Percent gap Percent CPU time in CPU time in
heuristic ~ Learning rule ~ Gap' with Gap with greedy- ~ Gap with over single over greedy- with single with greedy- gap with seconds for greedy- seconds for
used parameter used single pass only AugNN> AugNN-GNG pass (%) only AugNN (%) pass (%) only AugNN (%) AugNN-GNG (%) only AugNN AugNN-GNG
HLF Level 7101 4252 3246 54.3 23.7 5.0 3.0 2.3 916.4 790.7
LET 7101 4440 3255 54.2 26.7 5.0 3.1 2.3 925.8 7524
HLETF LET 4304 2822 2531 412 10.3 3.0 2.0 1.8 886.1 7724
CPMISF CPMISF 8977 4657 3285 63.4 295 6.3 33 2.3 1187.7 864.3
-8 LET 8977 5422 3555 60.4 36.83 6.3 3.8 2.4 1241.1 752.4
e SPT SPT 27474 11809 4032 85.3 65.9 19.3 8.3 2.8 1079.7 864.3
LET 27474 11706 4027 85.3 65.6 19.3 8.2 2.8 1018.6 752.4
g LPT LPT 15125 5900 3572 76.4 395 10.6 4.1 2.5 1170.3 791.3
= LET 15125 6325 3606 76.2 43.0 10.6 44 2.5 1102.3 757.8
%) RANDOM ~ RANDOM 13218 4489 3354 74.6 25.3 9.3 32 2.4 1394.9 853.5
% LET 13218 4466 3338 74.7 25.3 8.9 3.1 2.3 1315.0 760.2
= Note. These results are aggregate over 344 problems where processing times were drawn from a uniform distribution.
ﬁi "Gap between obtained solution and the lower bound solution. The lower bound solution for these problems was 142,490.
> 2Gap with nongreedy only AugNN was 4049 or 2.8%.
S 3Gap expressed as percentage of lower bound.
S Table 2b Aggregate Results for the Normal Set
©
= Improvement Improvement
8 Greedy AugNN-GNG ~ AugNN-GNG Percent gap® Percent gap Percent CPU time in CPU time in
o} heuristic ~ Learning rule ~ Gap' with Gap with greedy- ~ Gap with over single over greedy- with single with greedy- gap with seconds for greedy- seconds for
S‘ used parameter used single pass only AugNN> AugNN-GNG pass (%) only AugNN (%) pass (%) only AugNN (%) AugNN-GNG (%) only AugNN AugNN-GNG
o
L HLF Level 2482 1359 1273 48.7 6.3 44 24 22 683.7 613.7
: LET 2482 1386 1260 49.2 9.1 44 2.4 2.2 676.3 593.7
8 HLETF LET 1781 1177 1140 36.0 32 3.1 2.1 1.9 729.8 610.3
o CPMISF CPMISF 3162 1831 1427 54.9 22.1 5.6 32 2.5 967.5 697.3
— LET 3162 1795 1372 56.6 23.6 5.6 32 2.4 994.6 597.3
w® SPT SPT 11104 3835 1700 84.7 55.7 195 6.8 3.0 999.1 622.9
- LET 11104 3845 1694 84.7 55.9 19.5 6.8 3.0 936.2 593.5
9 LPT LPT 6196 2219 1440 76.8 35.1 10.9 39 2.5 1011.9 639.0
o LET 6196 2252 1477 76.2 34.4 10.9 4.0 26 967.5 595.4
N RANDOM RANDOM 4811 1847 1398 70.9 24.3 8.5 33 2.5 1155.9 725.4
= LET 4979 1792 1376 72.4 23.2 8.5 32 2.4 1100.4 598.8
= o o
© Note. These results are aggregate over 344 problems where processing times were drawn from a normal distribution.
FC' "Gap between obtained solution and the lower bound solution. The lower bound solution for these problems was 56,804.
(=) 2Gap with nongreedy only AugNN was 1,624 or 3.0%.
'@‘ 3Gap expressed as percentage of lower bound.
8 Table 2¢ Aggregate Results for the Exponential Set
N~
g Improvement Improvement
- Greedy AugNN-GNG AugNN-GNG Percent gap® Percent gap Percent CPU time in CPU time in
™ heuristic ~ Learning rule ~ Gap' with Gap with greedy- Gap with over single over greedy- with single with greedy- gap with seconds for greedy- seconds for
,:,' used parameter used single pass only AugNN> AugNN-GNG pass (%) only AugNN (%) pass (%) only AugNN (%) AugNN-GNG (%) only AugNN AugNN-GNG
>
ke HLF Level 11013 6605 3825 65.3 421 74 44 26 932.7 7276
o LET 11013 6802 3815 65.4 439 74 45 2.5 942.0 738.0
o] HLETF LET 4109 2683 2404 415 10.4 2.7 1.8 1.6 845.6 756.1
(%) CPMISF CPMISF 10388 5041 3273 68.5 35.1 6.9 34 2.2 1246.4 688.1
g LET 10388 6375 3573 65.6 44.0 6.9 43 2.4 1277.6 742.0
[=) SPT SPT 34142 13093 4378 87.2 66.6 228 8.7 29 1063.0 805.7
‘€ LET 34142 13312 4394 87.1 67.0 228 8.9 29 1004.5 737.3
= LPT LPT 16930 6913 3676 78.3 46.8 1.3 46 2.5 1167.1 759.2
e LET 16930 7097 3752 77.8 4741 1.3 47 2.5 1093.9 7405
° RANDOM ~ RANDOM 15043 4571 3345 77.8 26.8 10.1 3.1 2.2 1388.5 781.7
“‘_é LET 15744 4579 3286 79.1 28.2 10.5 3.1 22 1303.9 7425
k) Note. These results are aggregate over 344 problems where processing times were drawn from an exponential distribution.
o "Gap between obtained solution and the lower bound solution. The lower bound solution for these problems was 149,672.
[S 2 : o
= Gap with nongreedy-only AugNN was 4,881 or 3.2%.
8 SGap expressed as percentage of lower bound.

activation function of the machine nodes. We com-
bined each of the six greedy heuristics with the non-
greedy heuristic in two different ways, as discussed
in Section 4.2. For each of these twelve combinations,
we tried two different learning rules.

Results are tabulated in Tables 2 and 3. Table 2 is
divided into three parts (a, b, and c), one for each set

RIGHTS L)

of problems. For the uniform set (Table 2a), the lower
bound for all 344 problems combined is 142,490 ut.
The best single-pass greedy heuristic (HLETF) gives a
gap (obtained solution minus lower bound) of 4,304
while the worst (SPT) is 27,474. As a percentage of the
lower bound these gaps range from 3% for HLETF
to 19.3% for SPT. Greedy-only AugNN approach

Agarwal, Jacob, and Pirkul: An Improved Augmented Neural-Network Approach for Scheduling Problems
INFORMS Journal on Computing 18(1), pp. 119-128, © 2006 INFORMS

127

Table 3 Cases with Known Optimum Solution’ for the Uniform Set of 344 Problems

Downloaded from informs.org by [131.247.30.78] on 16 May 2016, at 16:00 . For personal use only, all rights reserved.

Greedy heuristic ~ Learning rule With single-pass ~ Expressed as With greedy- Expressed as With Expressed as
used parameter used greedy heuristic percentage (%) only AugNN percentage (%) AugNN-GNG percentage (%)
HLF Level 6 1.742 68 19.77 70 20.35
LET 6 1.74 54 15.70 72 21.28
HLETF LET 1 3.20 79 22.97 92 26.08
CP/MISF CP/MISF 12 3.49 73 21.22 76 22.40
LET 12 3.49 55 15.99 73 21.22
SPT SPT 1 0.29 12 3.49 35 10.18
LET 1 0.29 14 4.07 36 10.47
LPT LPT 5 1.45 44 12.79 65 18.89
LET 5 1.45 39 11.34 59 17.14
Random Random 4 1.16 87 25.29 87 25.29
LET 5 1.45 87 25.29 87 25.29

A solution is known to be optimum if the solution equals the lower bound.

26 as a percentage of 344 is 1.74%

reduces these gaps to 2.0% for HLETF to 8.3% for SPT.
The nongreedy-only AugNN approach reduces the
gap to 2.8%, which is better than five out of six greedy
heuristics. AugNN-GNG further reduces the gap to
1.8% for HLETF to 2.8% for SPT. These results are
extremely encouraging. We wanted to test the robust-
ness of our algorithms on more problem sets.

For the normal set (Table 2b), the total lower bound
for all problems is 56,804. Single-pass heuristic gaps
range from 3.1% for HLETF to 19.5% for SPT. Greedy-
only AugNN reduce these gaps to 2.1% for HLETF to
6.8% for SPT. The nongreedy-only AugNN approach
reduces the gap to 3.0%, better than four out of six
greedy heuristics. AugNN-GNG further reduces the
gap to 1.9% for HLETF to 3.0% for SPT.

For the exponential set (Table 2c), the total lower
bound for all problems is 149,672. Single-pass heuris-
tics give gaps of 2.7% for HLETF to 22.8% for SPT.
Greedy-only AugNN reduces these gaps to 1.8% for
HLETF to 8.9% for SPT. Nongreedy-only AugNN
approach reduces the gap to 3.2%, which is better
than four out of six greedy heuristics. AugNN-GNG
further reduces the gap further to 1.6% for HLETF to
2.9% for SPT. Results over all three sets are very sim-
ilar and they sufficiently illustrate the robustness of
the AugNN-GNG approach.

Another criterion used to compare AugNN-GNG
with greedy-only AugNN and single-pass greedy
heuristics is the “number of known cases with opti-
mal solution” (Table 3). For the uniform set, while
single-pass heuristics gave from one known opti-
mal solution for SPT to 11 for HLETF, greedy-only
AugNN gave 12 known optimal solutions for SPT, 79
for HLETF and 87 for RANDOM. AugNN-GNG gave
as many as 35 known optimal solutions for SPT and
as high as 92 for HLETF. Results for other two sets
were similar and are not reported to conserve space.

The average number of iterations needed for the
best solution is 20 for all three sets.

The computational complexity of the AugNN-GNG
approach is O(n* 4 mn), the same as that of AugNN

RIGHTS L

and of single-pass heuristics. The only difference is
that the AugNN approaches require a few iterations
whereas single-pass heuristics, by definition, require
just one. However, the number of iterations required
are very few and do not increase with the problem
size. The computational complexity of NN based on
the Hopfield-and-Tank paradigm is an order of mag-
nitude higher (worse) than our computational com-
plexity. Lo and Bavarian (1993) show a complexity of
O(nmk)?, where k is the makespan. Also, the num-
ber of iterations required in the Hopfield-and-Tank
approach can range up to several thousands (up to
3,000 in the case of Lo and Bavarian) compared to
ours, which averaged below 20.

6. Discussion

It is important to note that in the AugNN approach,
the architecture of the neural network is tied to the
structure of the given scheduling problem. So by
design, the neural-network structure will change for
each problem. The training, which affects the weights
of the links, therefore applies only to a particular
instance of the problem. In other words, the trained
network may not be used to solve new and unseen
problems. However, an automated tool, which is part
of the implementation of our approach, creates a new
structure for a problem in real time. Because the train-
ing lasts for fewer than 100 iterations, the training
time is negligible.

While our approach is used for solving the
resource-constrained task-scheduling problem with
identical machines with the objective of minimiz-
ing the makespan, this framework can be extended
for other types of scheduling problems. For exam-
ple, the case of nonidentical machines can be consid-
ered by simply treating the machine nodes as those
of nonidentical machines. For example, in Figure 3,
machine nodes M;; and M,,;, which represent nodes
for machines 1 and 2 for task 1, respectively, could
be treated as nonidentical. The different processing
times will also play a part in the competition between

Downloaded from informs.org by [131.247.30.78] on 16 May 2016, at 16:00 . For personal use only, all rights reserved.

Agarwal, Jacob, and Pirkul: An Improved Augmented Neural-Network Approach for Scheduling Problems

128

INFORMS Journal on Computing 18(1), pp. 119-128, © 2006 INFORMS

which machine is assigned to job 1. The case of job-
shop scheduling can also be handled by modifying
the architecture of the links between the machine and
task nodes to reflect the sequence of operations on
various jobs. The approach can also be applied to
other operations research problems such as the trav-
eling salesman problem. Each machine node can be
treated as a city and the distance to the city is equiv-
alent to the processing time.

7. Summary and Conclusions

We have proposed very robust algorithms through
an extension of the AugNN approach proposed by
Agarwal et al. (2003) to solve the task-scheduling
problem. The problem is to minimize the makespan
for scheduling n tasks on m identical machines, where
the tasks follow a predetermined precedence order
and are nonpreemptive. The AugNN approach is
a hybrid of the heuristic and the neural-network
approaches. We propose a nongreedy heuristic in
which tasks on noncritical paths with large slack are
forced to wait in spite of machine availability, to give
more critical tasks a chance to get assigned. Using the
nongreedy heuristic with the AugNN approach, the
results were better than most of the greedy heuristics
used with AugNN. We then combine the nongreedy
heuristic with one of many greedy heuristics (AugNN-
GNG) and find solutions better than the best greedy
heuristic.

We have demonstrated how a nongreedy and a
greedy heuristic can be combined in the AugNN
framework to get significantly improved results, irre-
spective of the greedy heuristic used. The proposed
extensions were tested on over a thousand problems.
Although the greedy-only AugNN approach has been
shown to reduce the gap between the obtained solu-
tion and the lower-bound solution by as much as 66%
compared to some single-pass heuristics, AugNN-
GNG was able to reduce the gap further by as much
as 65% for some heuristics. Also, the new approach
is able to find solutions, on average, within 1.8% to
2.8% of the lower bound compared to 2.0% to 8.3%
for the greedy-only AugNN approach and 3.0% to
19.3% for the single-pass greedy-heuristic approaches.
This improvement is obtained without any increase in
either computational complexity or time. The AugNN
approach could be used for other problems such
as the job-shop scheduling, open-shop scheduling,
independent-tasks scheduling, etc.

References

Adam, T. L., K. M. Chandy, J. R. Dickson. 1974. A comparison of
list schedules for parallel processing systems. Comm. ACM 17
685-690.

Agarwal, A., V. S. Jacob, H. Pirkul. 2003. Augmented neural net-
works for task scheduling. Eur.]. Oper. Res. 151 481-502.
Aytug, H., S. Bhattacharya, G. J. Koehler, J. L. Snowdon. 1994. A
review of machine learning in scheduling. IEEE Trans. Engrg.

Management 41 165-171.

RIGHTS LI L)

Candido, M. A. B, S. K. Khator, R. M. Barchia. 1998. A genetic algo-
rithm based procedure for more realistic job shop scheduling
problems. Internat. J. Production Res. 36 3437-3457.

Casavant, T. L., J. G. Kuhl. 1988. A taxonomy of scheduling in
general-purpose distributed computing systems. IEEE Trans.
Software Engrg. 14 141-154.

Cheng, T. C. E, C. C. S. Sin. 1990. A state-of-the-art review
of parallel-machine scheduling research. Eur. |. Oper. Res. 47
271-292.

Coffman, E. G. 1976. Computer and Job-Shop Scheduling Theory. Wiley,
New York.

Dahl, E. D. 1987. Neural network algorithm for an NP-complete
problem: Map and graph coloring. Proc. 1st Joint Conf. Neural
Network III, San Diego, CA, 113-120.

Foo, Y. P. S., Y. Takefuji. 1988a. Stochastic neural networks for solv-
ing job-shop scheduling: Part 1. Proc. Joint Internat. Conf. Neural
Networks 2 275-282.

Foo, Y. P. S., Y. Takefuji. 1988b. Stochastic neural networks for solv-
ing job-shop scheduling: Part 2. Proc. Joint Internat. Conf. Neural
Networks 2 283-290.

Gass, S. I, C. M. Harris. eds. 2001. Encyclopedia of Operations Research
and Management Science. Kluwer, Boston, MA.

Graham, R. L., E. L. Lawler,]J. K. Lenstra, A. H. G. Rinnooy
Kan. 1979. Optimization and approximation in deterministic
sequencing and scheduling: A survey. Ann. Discrete Math. 5
287-326.

Hopfield, J. J., D. W. Tank. 1985. Neural computation of decisions
in optimization problems. Biol. Cybernetics 52 141-152.

Hu, T. C. 1961. Parallel sequencing and assembly line problems.
Oper. Res. 9 841-848.

Kasahara, H., S. Narita. 1984. Practical multiprocessor scheduling
algorithms for efficient parallel processing. IEEE Trans. Comput.
C-33 1023-1029.

Kasahara, H., S. Narita. 1985. Parallel processing of robot-arm
control computation on a multimicroprocessor system. IEEE
J. Robotics Automation. RA-1 104-113.

Lo, Z. P,, B. Bavarian. 1993. Multiple job scheduling with artificial
neural networks. Comput. Electr. Engrg. 19 87-101.

Miller, D. M., H. C. Chen, J. Matson, Q. Liu. 1999. A hybrid genetic
algorithm for the single machine scheduling problem. J. Heuris-
tics 5 437-454.

Panwalker, S. S., W. Iskander. 1977. A survey of scheduling rules.
Oper. Res. 25 45-61.

Potts, C. N., M. Y. Kovalyov. 2000. Scheduling with batching:
A review. Eur.]. Oper. Res. 120 228-249.

Rajendran, C., O. Holthaus. 1999. A comparative study of dispatch-
ing rules in dynamic flowshops and job shops. Eur.]. Oper. Res.
116 156-170.

Ramamoorthy, C. V., K. M. Chandy, M.]J. Gonzalez. 1972. Optimal
scheduling strategies in a multiprocessor system. IEEE Trans.
Comput. C-21 137-146.

Rinnooy Kan, A. H. G. 1976. Machine Scheduling Problems: Clas-
sification, Complexity and Computations. Martinus Nijhoff, The
Hague, The Netherlands.

Sabuncuogluy, 1., 1998. Scheduling with neural networks: A review
of the literature and new research directions. Production Plan-
ning Control 9 2-12.

Sabuncuoglu, I, B. Gurgun. 1996. A neural network model for
scheduling problems. Eur. |. Oper. Res. 93 288-299.

Sakawa, M., R. Kubota. 2000. Fuzzy programming for multiobjec-
tive job shop scheduling with fuzzy processing time and fuzzy
due date through genetic algorithms. Eur. . Oper. Res. 120 393—
407.

Satake, T., K. Morikawa, N. Nakamura. 1994. Neural network
approach for minimizing the makespan of the general job shop.
Internat. |. Production Econom. 33 67-74.

Steinhofel, K., A. Albrecht, C. K. Wong. 1999. Two simulated
annealing-based heuristics for the job shop scheduling prob-
lem. Eur. |. Oper. Res. 118 524-548.

Zhang, H. C., S. H. Huang. 1995. Application of neural networks in
manufacturing: a state of the art survey. Internat. |. Production
Res. 33 705-728.

