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Abstract

We propose new heuristics along with an augmented-neural-network (AugNN) formulation for solving the make-
span minimization task-scheduling problem for the non-identical machine environment. We explore four task and three
machine-priority rules, resulting in 12 combinations of single-pass heuristics. The task-priority rules are Highest-Level-
First (HLF), Highest-Total-Remaining-Processing-Time-First (HTRPTF), Smallest-Latest-Finish-Time-First (SLFTF)
and Minimum-Slack-First (MSF). For machine priority, we propose a greedy rule called Fastest-Available-Machine-
First (FAMF), and two non-greedy rules: (1) Fastest-Available-Machine-First-With-Conditional-Wait-1 (FAMF-
CW-1), and (2) Fastest-Available-Machine-First-With-Conditional-Wait-2 (FMF-CW-2). The AugNN approach inte-
grates neural-network learning with domain and problem specific knowledge through heuristics, to produce good
results. A single-pass heuristic is embedded in a neural network designed specifically for each problem. We give the
AugNN formulation for each of the 12 heuristics and show computational results on 100 randomly generated problems
of sizes ranging from 20 to 70 tasks and 2 to 5 machines. Results demonstrate that AugNN provides significant
improvement over single-pass heuristics. The reduction in the gap between the obtained solution and the lower-bound
due to AugNN over single-pass heuristics ranged from 24.4% to 50%. As far as heuristics, the non-greedy machine-pri-
ority rules performed significantly better than the greedy rule. The average gaps for the non-greedy rules ranged from
16.1% to 23.5% compared to 33.7% to 40.4% for greedy. For AugNN, for non-greedy rules, the gap ranged from 11.5%
to 15.5% compared to 18.4% to 25.0% for greedy. The HLF and HTRPTF task priority rules performed better than the
other two. The HTRPTF/FAMF-CW-1 combination gave the best results, closely followed by HLF/FAMF-CW-2 and
HTRPTF/FAMF-CW-2 combinations.
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1. Introduction

The problem of optimally scheduling non-preemptive tasks with precedence constraints, on non-identi-
cal machines (or processors) belongs to the class of NP-Hard problems (De and Morton, 1980). The prob-
lem occurs in many computing environments. For example, in a multiprocessor environment, a computing
job is broken down into smaller tasks, to be performed on different, and often, non-identical processors
(Ibarra and Kim, 1977; El-Rewini et al., 1995). In network computing environment, a job may be processed
on several idle processors available on a computer network (Saltzman, 1995). Processors on a network are
likely to be non-identical. The problem also appears in an n-tier client-server environment where a job is
distributed across servers of varying speeds. Similarly, on the Internet, file transfer occurs in packets, where
packets go through various paths having processors of different speeds. Traditionally, the scheduling prob-
lem with non-identical machines is found in the manufacturing environment (Graves, 1981). There is there-
fore a need for good scheduling techniques for scheduling in the non-identical machine environment. Any
improvements in the solution procedures for scheduling for this type of problem will have implications in
both computing and manufacturing environments.

We consider such a task-scheduling problem in which a set of non-preemptive tasks with precedence con-
straints is to be scheduled on non-identical and non-uniform machines, to minimize makespan. Each task
needs to be processed on only one machine and a machine can handle only one task at a time. The distin-
guishing feature of this problem is that the processing times of tasks depend on the machine. We assume
non-uniformity of machines, i.e., a fast machine is not always faster than a slower machine for all tasks. For
example, assume that machine A has a higher processing speed than machine B, but that machine B has
higher memory. A CPU intensive task would run faster on machine A, while an I/O intensive task would
run faster on machine B. The uniform machine case would be a special case of the non-identical machine
case.

Due to its NP-Hard nature, there are not likely to be any polynomial-time algorithms to optimally solve
this problem. Numerous heuristics are available for various scheduling problems involving the use of dif-
ferent dispatching rules for scheduling unexecuted ready tasks to machines or processors (Panwalker and
Iskander, 1977; El-Rewini et al., 1995).

Several heuristics and other iterative search techniques exist for the task-scheduling problem for the case
of identical machines (Kasahara and Narita, 1984; Agarwal et al., 2003, in press), or uniform machines (Ep-
stein and Sgall, 2000; Gonzalez and Sahni, 1978), but, to the best of our knowledge, none for non-identical
machines. Heuristics exist for non-identical machine scheduling problem for the case where all tasks are
ready at time zero, i.e., the tasks do not follow precedence constraints (De and Morton, 1980). For the
problem we consider in this paper, a heuristic would be a combination of a task-priority rule and a machine
priority rule. While task-priority rules have been well studied, machine priority rules have not.

One of the difficulties with the non-identical machine problem is finding good quality lower-bounds for
comparison of results. In the identical-machine case, relaxing the resource constraint gives a quick critical-
path based lower-bound of fairly good quality. For the non-identical machine case, finding a lower-bound
requires a second assumption that all tasks are assigned to the fastest machine. If the differences in process-
ing times between a faster and a slower machine are substantial, a likely scenario, this second assumption
leads to poor quality lower bounds. Therefore, the gaps between the obtained solution and the lower-bound
are likely to be much wider for the non-identical machine case than those for the identical-machine case. In
other words, the performance ratio (solution to lower bound) for search techniques for this type of problem
will inherently be poor. Further, it will be hard to show the optimality of any reasonably sized problem. The
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only way to show the effectiveness of an iterative search technique would be to show significant reductions
in the gaps, compared to single-pass heuristics.

In this paper, we propose 12 heuristics and augmented neural networks (AugNN) for solving this non-
identical machine scheduling problem. As mentioned earlier, while heuristics for the identical-machine case
involve only task-priority rules, those for the non-identical-machine case are a composite of a task-priority
rule and a machine-priority rule. We explore four rules for task priority and three for machine priority.
The task-priority rules we consider are routinely found in scheduling literature (Hu, 1961; Panwalker
and Iskander, 1977; Agarwal et al., 2003, in press). Same heuristics often appear in different studies with
different names or acronyms. We consider Highest-Level-First (HLF), Highest-Total-Remaining-Process-
ing-Time-First (HTRPTF), Smallest-Latest-Finish-Time-First (SLFTF) and Minimum-Slack-First
(MSF). Machine-priority rules for the non-identical machine case are not found in the literature. We pro-
pose three rules, one greedy and two non-greedy. The greedy heuristic is called Fastest-Available-Machine-
First (FAMF). The non-greedy rules are (1) Fastest-Available-Machine-First-with-Conditional-Wait-1
(FAMF-CW-1), and (2) Fastest-Available-Machine-First-With-Conditional-Wait-2 (FAMF-CW-2).
Twelve heuristics result from various combinations of these four task and three machine priority rules.

We also formulate the AugNN approach for this problem and show significant improvements over each
of the single-pass heuristics. The AugNN approach is shown to have worked well on the task-scheduling
problem with identical machines (Agarwal et al., 2003, in press). In this approach, a given scheduling prob-
lem is framed as a neural network, where the task and machine nodes act as processing elements of a neural
network. Input, output and activation functions for these nodes are defined in a manner that the constraints
of the problem are enforced and a heuristic is applied to produce a feasible solution. There are weights asso-
ciated with the connections between the task and machine nodes. These weights are the same for all the
links during the first iteration, therefore the first-iteration solution is no different from a single-pass heuris-
tic solution. In subsequent iterations, however, the weights are modified using a certain learning algorithm
to produce different solutions in the search space. The weight change essentially amounts to a perturbation,
and thus a non-deterministic local neighborhood search mechanism. We propose input, output and activa-
tion functions for the task and machine nodes and also propose a learning strategy. We apply the AugNN
approach in conjunction with each of the twelve heuristics and report results on randomly created problems
of various sizes.'

In Section 2, we discuss the literature briefly. Section 3 describes the various task and machine priority
rules with the help of two example problems. Section 4 describes the AugNN framework. The exact math-
ematical formulation appears in Appendix 1. Computational results are reported and discussed in Section
5. We conclude the paper with summary and conclusions in Section 6.

2. Relevant literature

Research on the use of neural networks for optimization started with the seminal paper by Hopfield and
Tank (1985), who first applied neural networks to the traveling-salesman problem. Haldun et al. (1994) pro-
vide a review of machine-learning techniques used in scheduling problems. They explore the use of expert
systems, rote learning, inductive learning and case-based learning. They only briefly discuss neural-network
learning. Sabuncuoglu (1998) has focused his review paper on the use of various neural-networks-based
techniques in scheduling. He classifies neural-networks research for scheduling into three types—Hopfield
networks based, competitive networks based and multi-layer perceptrons and back-propagation networks

! These problems are available on http://bear.cba.ufl.edu/agarwal/taskscheduling/nonidenticalmachines. The best solutions obtained
so far are also reported.


http://bear.cba.ufl.edu/agarwal/taskscheduling/nonidenticalmachines

A. Agarwal et al. | European Journal of Operational Research 175 (2006) 296-317 299

based. Sabuncuoglu and Gurgun (1996) propose an enhancement of the Hopfield network by including an
external processor that monitors and controls the evolution of the network. This enhancement significantly
reduced the inherent complexity of the Hopfield network. Smith et al. (1996) propose a hybrid of Hopfield
network and self-organizing networks to overcome the deficiencies of each of these types of network. Smith
et al. (1998) explain the Hopfield network, an improved Hopfield network and the self-organizing network
for a general optimization problem. Smith (1999) also reviews the state of the art on the use of Hopfield
networks to the various optimization problems, including scheduling, in particular job-shop scheduling.
Foo and Takefuji (1988) and Satake et al. (1994) apply Hopfield networks to solve the job-shop scheduling
problem. Researchers in the field of neural networks for optimization problems are trying to develop a
meta-heuristic paradigm to compete with genetic algorithms and simulated annealing.

However, the Hopfield approach has its shortcomings; in particular, the performance deteriorates expo-
nentially with the problem size. Agarwal et al. (2003) proposed an alternative neural-network approach,
which they called the augmented-neural-network approach in which use is made of domain and problem
specific knowledge. It employs single-pass heuristics, and improvements are sought iteratively through a
learning strategy involving weights modification. This approach differs completely from the Hopfield net-
works or other prior neural-network approaches. It overcomes the shortcoming of performance on large-
sized problems.

For a review of the various dispatching rules used in heuristics for scheduling problems, see Adam et al.
(1974) and Panwalker and Iskander (1977). De and Morton (1980) give a heuristic for scheduling jobs on
equal, uniform and non-identical machines for the case where all jobs are ready at time ¢ = 0. Gonzalez and
Sahni (1978) and Horowitz and Sahni (1976) discuss issues with uniform machine scheduling and non-iden-
tical machine scheduling.

3. Priority rules with examples

For purposes of discussing the priority rules we will use a small example problem. Fig. 1 shows a sample
task graph of nine tasks (T1-T9) and four non-identical machines (M1-M4). The nine tasks follow prece-
dence constraints, represented by the given acyclic directed graph. Each task can be processed on any of the
four machines, but needs to be processed on only one of them. The tasks are non-preemptive. The objective
is to minimize the makespan or the completion time of the last task in the task graph. Processing times for
each task on each machine are known and deterministic and shown next to each task node. Each task shows
four processing times, in order, for each of the four machines.

1,1,1,1

11,5178

19,23,25,12

Fig. 1. A sample task graph.
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3.1. Task priority rules

The first task-priority rule we use is Highest-Level-First (HLF). In this rule, priority is given to the task
with the highest level. The level of a task is defined as the most number of tasks in the remaining path,
including the task in question. This heuristic was first proposed by Hu (1961) for the task-scheduling prob-
lem. It is a very simple, yet effective rule. The levels of each task in our example are listed in Fig. 2.

The second rule we use is the Highest-Total-Remaining-Processing-Time-First rule (HTRPTF). This rule
gives priority to the task with the highest total remaining processing time (TRPT). TRPT for a task is de-
fined as the highest sum of the processing times of all the tasks in the remaining paths till the final task and
including the task in question. Computing TRPT in the non-identical machine environment assumes that
tasks will be assigned to a certain machine. We assume that tasks will be assigned to the fastest machine.
This heuristic gives very good results for the identical machine case (Agarwal et al., 2003). In the literature,
HTRPTF is also sometimes known as Most-Work-Remaining-First. Fig. 2 lists the TRPT of each task.

The third rule we use is the Smallest-Latest-Finish-Time-First heuristic (SLFTF). This rule gives priority
to the task with the smallest latest finish time (LFT). Again, the computation of LFT requires the assump-
tion that each task is assigned to the fastest machine. Fig. 2 also lists the LFT for each task.

The last task-priority rule we consider is called Minimum-Slack-First (MSF). This rule gives priority to
the task with the smallest slack. Again, we assume that each task will be assigned to the fastest machine.
The HLFTF and the MSF heuristics have both given good results in the resource constrained project sched-
uling problem. Fig. 2 lists the LFT for each task.

3.2. Machine priority rules

We consider three priority rules for machines. The first one is a greedy rule called Fastest-Available-
Machine-First (FAMF). Whenever a task becomes ready to start, the fastest of the available machines is
assigned to the task. Although this rule is effective, it fails to give good results for problems in which
the speed differential between machines is significant. In such situations, assigning a task to a slower
machine might actually prolong a particular path unnecessarily, slowing down the entire project. This dif-
ficulty can be overcome by some non-greedy rules. The first non-greedy rule we propose uses some prob-
lem-specific knowledge, in which the fastest available machine is assigned only if the following condition
holds:

Wem + PTem > PTeam,

Task- Task

Priority

Rule 2 3 5 6 7 8 9

Level 5 3 4 2 3 3 3 2 1

TRPT 16 15 14 3 8 7 8 3 1

LFT 1 13 8 15 13 13 13 15 16

Slack 0 0 1 0 1 2 1 1 0
a

Level 1 3 2 4 3 3 3 4 5

TRPT 1 2 3 6 4 5 4 6 7

LFT 1 3 2 4 3 3 3 4 5

Slack 1 1 2 1 2 3 2 2 0
b

Fig. 2. Task-priority parameters for the example problem. (a) Absolute numbers for Level, TRPT, LFT and Slack. (b) Ranked
numbers for each task for Level, TRPT, LFT and Slack.
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where Wgy is the wait for the fastest machine, PTgy, is processing time on the fastest machine and PTgapm
is processing time on the fastest available machine.

If the condition does not hold, we wait for the fastest machine. This condition prevents assignment of a
task to a machine that is too slow. We call this rule the Fastest-Available-Machine-First-With-Conditional-
Wait-1 (FAMF-CW-1). A further improvement may be possible in some problems by modifying the wait

M4
M3
M2
M1

M4
M3
M2
M1

M4
M3
M2
Ml

M4
M3
M2
Ml

M4
M3
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| 42)
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20 21

22

2(12)

5(5)

3(13)
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42

8(2)

19 21

22

2(12)

505)

3(13)

6(4)

42 |

7(5)

8(2)|9

e

13 14 16

18 19 21

23 24

Fig. 3. Gantt charts for various heuristics. (a) HLF/FAMF and SLFTF/FAMF. (b) HTRPTF/FAMF and MSF/FAMF. (c) HLF
and HLFTF/FAMF-CW-1 and CW-2. (d) HTRPTF/FAMF-CW-1 and CW-2. (¢) MSF/FAMF-CW-1 and CW-2.
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condition slightly. A task need not wait for just the fastest machine, but could wait for the second or third
(or more) fastest machine as long as a similar condition is satisfied. The second non-greedy rule, called Fast-
est-Available-Machine-First-With-Conditional-Wait-2 (FMF-CW-2) considers this condition. In this rule,
if the fastest machine for a given task is not available, assign the task to the fastest of the available machines
only if

min(W; + PT;) > PTram,

ieB

where B is the set of machines currently busy; other notation is already described above.

1,1,1,1

®OB® ;g

3.25.20.13 13146 1719153

1,15,21,20
Fig. 4. Second sample task graph.
M4 | 3(1) 6 (6)
M3 7(15) | 8(2) |
M2 4(13) |
Ml 1 | 2(1) 5(3) | 9
1 2 5 8 15 17 19 20
a
M4 30 | 6(6) 73)
M3 8(2)
M2 4(13)
ML 1|2 53) 9
1 2 5 8 11 13 15 16
b
M4 | 3(1) | 6 (6) 73)
M3 8(2) |
M2
M1 1 | 2(1) | 53) 4(9) | 9
1 2 5 8 11 13 14 15
c

Fig. 5. Gantt charts for the task graph of Fig. 4 for HLF task-priority rule and different machine-priority rules. (a) HLF/FAMF.
(b) HLF/FAMF-CW-1. (c) HLF/FAMF-CW-2.
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Fig. 2 gives the task-priority rule parameters and the rankings due to different task-priority rules for the
example problem in Fig. 1. For the same problem, the solutions range from a makespan of 22-25, giving
five different solutions between the twelve algorithms. Fig. 3(a)—(e) give the five different Gantt charts for
the various heuristics for this problem. For example, HLF and SLFTF in conjunction with FAMF (Fig. 3a)
give a makespan of 23.

In Fig. 3(a) task 3 gets priority over task 2, because the ranked level (or LFT) of task 3 is higher than
task 2. In 3(b) task 2 gets the priority of task 3 since it is ranked higher under the TRPT and MSF rules.

For the greedy machine-priority rule, the makespan for the four task-priority rules range from 23 (for
HLF and SLFTF) to 25 (for TRPT and MSF). For the non-greedy rules, the makespans range from 22
to 24. Note that although HLF and HTRPT both give a makespan of 22, the schedules are different from
each other (Fig. 3(c) and (d)).

Fig. 4 shows a second example, for which Gantt Charts are drawn in Fig. 5(a)—(c). In the second exam-
ple, different makespans are obtained using the three different machine-priority rules, for the same task

Inhibitory signal between
machine nodes for the
same machine but
different tasks. (OML)

Signal from machine
node to task node
indicating s for the
same machine but
different tasks. (OML)

Inhibitory signal
between machine

& T
Inhibitory signal machine A’ D @ nodes for the
node to task node in the SN \ same task.

reverse direction (OMR) R - (OMM)

to indicate that a task is
picked up. @ Weight

Fig. 6. AugNN architecture for the task graph of Fig. 1.
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priority rule (HLF). In this example, the assignment of task 4 is the main difference between the two non-
greedy task-priority rules. At time ¢t = 2, task 4 has the last priority after tasks 5, 6 and 7. Task 4’s first
choice is machine 4, which is taken by task 6 for 6 time units. Under the FAMF-CW-1 rule, it is not worth
waiting 6 units of time for machine 4 on which the processing time is 8, because the fastest available ma-
chine, machine 2 takes only 13 units of time, and 6 + 8 > 13. However, under FAMF-CW-2 rule, we look
at all busy machines, and find that it might be worth waiting for machine 1, because machine 1 is busy for
only 3 time units and the processing time on machine 1 is 9. So for machine 1, 3 + 9 < 13, therefore it is

Read the Processing time matrix,
precedence matrix

Find the Lower Bound for the problem as Max\TRPT,,

)

(iPT/-)/m

v

Initialize the weightson the links at 10.0

[P

Calculate task nodes’ input, activation and output functions |

Modify Weights using a
learning strategy

A

v

Final task node produces a +ve output? No
Yes

A

A 4

Makespan = final node output

Calculate machine nodes’
input functions

gap = makespan - lower bound

v

Isgap=0

No
Yes

Make assignment decisions
using task and machine
priority rules conditions and
update machine nodes’
activation and output

functions

Optimum solution
found. Can Stop

Increment clock

Is the number of
iterations = max
number of iterations

Has the solution
changed in the
last 10 iterations?

Solution has converged

Fig. 7. Flow chart for the AugNN algorithm.

Yes

A
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worth waiting for machine 1, which is not the fastest machine for task 4. As a result, we get a better make-
span using the FAMF-CW-2 rule.

4. Augmented neural network formulation

In the AugNN formulation, the task graph is converted into a neural network of processing elements
(PEs). Each task node in the task graph becomes a PE and each of the task-node PEs is connected to a
machine-node PE, one for each machine. The task-node PEs of AugNN maintain the precedence relation
of the original task graph. See Fig. 6 for an AugNN representation of the task graph of Fig. 1. We then add
an initial node and a final node for ease of formulation. Following each task-node PE are four machine-
node PEs corresponding to the four non-identical machines. The first subscript (on the machine node) rep-
resents the machine number while the second represents the task to which it is connected from. There are
multiple layers of PEs. Each PE has an input, an activation function and an output function. These func-
tions allow us to apply a particular heuristic, such as HLF, HTRPTF etc., to produce a feasible solution.
The mathematical details of these functions are given in Appendix 1.

When a task node is ready to start, it sends a signal to the machine nodes it is connected to indicating
that it is ready to start. When multiple tasks send signals to multiple machines at the same time, task-pri-
ority and machine-priority rules are applied through the activation functions. Assignment takes place based
on competition. The assignment changes the state of the various PEs. When a machine node picks up a
task, it sends signals to other machine nodes indicating that it has picked up a task. When a machine is
done processing a task, it sends a signal to the task ahead that it is done processing, and also to other ma-
chines that it can compete for assignments. A task knows it is ready to start if it receives as many signals
from machines as there are tasks preceding it. This simple rule helps ensure the precedence constraints of
the problem.

There are weights associated with the links from task nodes to machine nodes. The weights are kept the
same for the first iteration, so the first iteration gives the same solution as the single-pass heuristic. The
weights are then modified in subsequent iterations, using an appropriate learning strategy, such that a
neighboring solution is obtained. When applying the heuristic such as HTRPTF for example, the product
of weight and TRPT is used to determine priority instead of TRPT alone. Note the presence of two sets of

Table 1

Summary of results for the 12 heuristics for the 100 test problems

Task priority =~ Machine Lower  Heuristic AugNN  Percent improvement  Percent gap Percent gap

rule priority bound  single-pass  solution by AugNN over from LB for  from LB for
rule solution single-pass single-pass AugNN

HLF FAMF 21491 29168 25518 12.51 35.7 18.7

HLF FAMF-CW-1 21491 25424 24035 5.46 18.3 11.8

HLF FAMF-CW-2 21491 25483 23989 5.86 18.6 11.6

HTRPTF FAMF 21491 29409 25443 13.49 36.8 18.4

HTRPTF FAMF-CW-1 21491 25574 23974 6.26 18.9 11.5

HTRPTF FAMF-CW-2 21491 25471 23989 5.82 18.5 11.6

SLFTF FAMF 21491 28734 26285 8.52 33.7 223

SLFTF FAMF-CW-1 21491 25039 24126 3.65 16.5 12.6

SLFTF FAMF-CW-2 21491 24963 24030 3.74 16.1 11.8

MSF FAMF 21491 30165 26867 10.93 40.4 25.0

MSF FAMF-CW-1 21491 26537 24814 6.49 23.5 15.5

MSF FAMF-CW-2 21491 26491 24744 6.59 233 15.1




306 A. Agarwal et al. | European Journal of Operational Research 175 (2006) 296-317

dotted links between machine nodes (Fig. 6). One set of dotted links is between machines for the same task
(shown in the Fig. 6 for tasks T1, T2 and T3, not shown for the rest to avoid cluttering.). The other set of
dotted links is between the same machine on different tasks (shown in Fig. 6 between M12 and M13, M 14
and M15 and M14 and M16 and not shown for the rest.). These links are used to send inhibitory signals to
other nodes to enforce certain constraints. The first set of links is used to ensure that the same task is not
assigned to more than one machine. The second set of links is used to ensure that the same machine does
not get assigned to more than one task at the same time. For instance, suppose task 2 is assigned to machine
1, while task 3 is not yet assigned, then node M12 will send an inhibitory signals to nodes M22, M32 and
M42 to ensure that task 2 does not also get assigned to machines 2, 3 or 4. M12 will also send inhibitory

Table 2A
Makespans for problem sizes 20, 25 and 30 for the three best heuristics
#of #of Problem Lower Upper HTRPTF/FAMF-CW1 HLF/FAMF-CW-2 HTRPTF/FAMF-CW-2
tasks  m/c # bound  bound Single-pass AugNN  Single-pass  AugNN  Single-pass  AugNN
heuristic heuristic heuristic
20 2 1 176 191 201 191 235 192 201 191
20 2 2 196 211 237 230 259 230 237 230
20 2 3 215 228 255 228 239 228 255 228
20 2 4 189 202 203 202 230 202 203 202
20 3 1 90 105 114 109 128 109 114 109
20 3 2 97 112 127 112 128 112 127 112
20 3 3 72 88 97 88 105 88 97 88
20 3 4 115 142 145 142 145 142 145 142
20 4 1 84 109 110 109 118 109 110 109
20 4 2 64 76 76 76 107 107 76 76
20 4 3 72 99 101 101 105 101 101 101
20 4 4 89 89 90 89 89 89 90 89
25 2 1 220 225 249 225 237 225 249 225
25 2 2 185 191 207 191 219 191 207 192
25 2 3 218 249 289 258 281 257 289 257
25 2 4 280 295 332 295 295 295 332 295
25 3 1 89 103 116 106 125 103 116 103
25 3 2 106 117 121 117 132 117 121 120
25 3 3 155 155 170 155 160 155 170 155
25 3 4 117 135 152 135 147 135 152 135
25 4 1 91 100 108 100 108 100 108 100
25 4 2 58 68 77 70 88 68 69 69
25 4 3 94 105 111 105 106 106 111 105
25 4 4 101 112 123 112 115 112 113 112
30 2 1 201 222 227 222 249 225 227 225
30 2 2 284 306 323 308 342 307 323 307
30 2 3 287 302 313 302 311 306 313 302
30 2 4 186 213 219 213 213 213 219 213
30 3 1 159 179 195 179 214 179 195 179
30 3 2 126 155 173 159 176 155 173 173
30 3 3 138 155 176 156 168 159 174 156
30 3 4 145 169 198 169 186 172 198 172
30 4 1 80 98 122 101 110 98 110 98
30 4 2 115 149 157 151 153 153 157 153
30 4 3 76 93 95 93 93 93 95 93
30 4 4 167 175 182 182 177 177 182 182

Note: Italicized entries show improvement in makespan by AugNN over one-pass heuristic.
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signal to M13 so that task 3 is not assigned to machine 1. Once task 2 is completed on say machine 1, node
M12 will send another signal withdrawing the inhibitory signal from M13. In addition to the dotted links
between machine nodes, there is a set of dotted links from the machine nodes back to the task node (shown
in Fig. 6 from M12, M22, M32 and M42 to T2). This link sends a signal to the task indicating that the task
is being processed by that machine.

One pass (iteration) from node I to F generates a feasible solution. After each iteration, the weights are
modified using a learning strategy. The change in weights is a function of error. The error is calculated as
the difference between the obtained makespan and the lower bound solution. The solution is arrived at after
several iterations. The stopping rule is—either a lower-bound solution is reached or that the solution re-
mains unchanged for 10 consecutive iterations or that the total number of iterations is 1000. Fig. 7 gives
a flowchart of the AugNN algorithm.

Agarwal et al. (2003, in press) had first proposed the AugNN framework for the task-scheduling prob-
lem with identical machines and had obtained good results. In this paper, we adapt the original formulation

Table 2B
Makespans for problem sizes 40 and 50 for the three best heuristics
#of #of Problem Lower Upper HTRPTF/FAMF-CW1  HLF/FAMF-CW-2 HTRPTF/FAMF-CW-2
tasks  m/c # bound  bound Single-pass AugNN  Single-pass  AugNN  Single-pass  AugNN
heuristic heuristic heuristic
40 2 1 396 405 443 405 426 405 443 405
40 2 2 351 398 466 404 438 404 466 405
40 2 3 299 305 340 316 325 308 340 316
40 2 4 303 324 345 324 354 325 345 327
40 3 1 166 193 214 193 212 193 214 193
40 3 2 188 251 264 251 257 253 264 253
40 3 3 151 187 208 188 196 188 208 188
40 3 4 189 202 231 205 225 206 231 202
40 4 1 94 121 129 121 142 136 129 121
40 4 2 141 157 177 157 177 157 177 157
40 4 3 152 191 203 192 192 191 203 191
40 4 4 126 159 159 159 167 163 161 161
40 5 1 131 133 133 133 144 138 138 138
40 5 2 142 160 181 169 161 161 161 161
40 5 3 150 169 175 171 175 171 175 171
40 5 4 112 122 122 122 146 128 127 127
50 2 1 433 445 469 446 463 445 469 446
50 2 2 519 528 557 528 548 530 557 530
50 2 3 409 416 441 416 440 431 441 419
50 2 4 463 485 525 495 517 494 525 493
50 3 1 192 213 237 213 250 215 237 213
50 3 2 200 224 235 226 251 224 235 229
50 3 3 189 213 230 219 231 224 235 221
50 3 4 226 246 263 247 271 246 263 246
50 4 1 135 174 184 179 200 175 184 177
50 4 2 140 167 180 167 208 169 185 167
50 4 3 136 174 190 175 204 174 184 176
50 4 4 134 157 200 158 185 157 199 158
50 5 1 154 189 199 189 203 189 201 189
50 5 2 104 133 152 138 144 134 152 135
50 5 3 104 134 163 142 159 134 155 136
50 5 4 126 146 149 147 155 148 149 148

Note: Ttalicized cells show improvement in makespan by AugNN over one-pass heuristic.
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for the much harder, non-identical machine case. The main adaptation is introducing machine-priority
rules on top of task-priority rules. This change is reflected in the machine-node activation function (see
Appendix 1). The assignment condition is more complex for this problem. Different assignment conditions
are proposed for different priority rules.

5. Computational experience
5.1. Problem generation and experimental setting
Problems were generated for sizes 20-70 tasks and 2-5 machines. For each task size, four precedence

relationships were developed at random. For problem sizes of 20, 25 and 30 tasks, 2-4 machines were used.
For larger problems, 2-5 machines were used. The processing times were generated randomly from uniform

Table 2C
Makespans for problem sizes 60 and 70 for the three best heuristics
#of #of Problem Lower Upper HTRPTF/FAMF-CW1  HLF/FAMF-CW-2 HTRPTF/FAMF-CW-2
tasks  m/c # bound  bound Single-pass AugNN  Single-pass  AugNN  Single-pass  AugNN
heuristic heuristic heuristic
60 2 1 483 493 516 494 493 493 516 494
60 2 2 573 586 604 588 604 593 604 586
60 2 3 513 521 562 524 549 529 562 525
60 2 4 577 589 643 592 605 598 643 598
60 3 1 302 323 345 323 358 325 345 324
60 3 2 283 309 332 317 341 318 334 318
60 3 3 332 354 379 359 377 356 379 356
60 3 4 282 317 338 325 336 322 338 322
60 4 1 148 174 190 183 184 183 190 185
60 4 2 183 231 250 236 247 233 250 233
60 4 3 141 176 203 176 198 178 190 185
60 4 4 148 179 183 183 185 179 183 183
60 5 1 145 178 186 181 184 183 186 184
60 5 2 108 133 164 138 140 138 164 140
60 5 3 136 161 182 169 191 169 182 169
60 5 4 132 156 169 159 173 161 173 158
70 2 1 678 678 722 678 695 679 722 678
70 2 2 576 609 671 609 641 610 671 609
70 2 3 580 599 624 609 622 607 624 599
70 2 4 592 601 622 601 603 601 622 601
70 3 1 324 344 359 344 378 346 359 345
70 3 2 345 396 412 401 427 404 412 400
70 3 3 316 327 352 334 344 336 352 333
70 3 4 321 338 359 358 355 347 359 354
70 4 1 195 228 251 229 231 228 231 228
70 4 2 189 235 270 235 258 238 258 235
70 4 3 206 230 262 234 257 231 262 233
70 4 4 197 230 247 247 282 237 242 242
70 5 1 131 163 188 166 169 167 177 165
70 5 2 151 208 232 215 230 220 219 218
70 5 3 178 207 219 208 219 210 213 211
70 5 4 134 168 183 183 179 175 197 181

Note: Ttalicized cells show improvement in makespan by AugNN over one-pass heuristic.
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distribution in the range of 1-50. A total of 100 problems were thus generated. This approach of generating
problems is consistent with Kasahara and Narita’s (1984) approach, and adequately represents real-world
problems. Coding was done in Visual Basic 6.0 and run on a Pentium 4 machine. We ran AugNN for 1000
iterations. The initial weights were set at 10.00 and learning rate at 0.1. These parameters were arrived at
after some initial testing.

5.2. Discussion of results

Table 1 summarizes the results of all 100 problems for all twelve heuristic combinations. The greedy ma-
chine-priority rule (FAMF) performed worse than the non-greedy (FAMF-CW-1 and CW-2), for each of
the four task-priority rules. The gaps from the lower bound for the greedy rule for single-pass heuristics
ranged from 33.7% (SLFTF) to 40.4% (MSF), compared to 16.1% to 23.5% for non-greedy. For three
of the four task-priority rules, FAMF-CW-2 gave marginally better results than FAMF-CW-1. AugNN
reduced the gaps significantly. For example, for HTRPTF/FAMF, the gap was reduced from 36.8% down
to 18.4%, a reduction of 50%. For HTRPTF/FAMF-CW-1, the gap was reduced from 18.9% down to
11.5%, a 39.2% reduction. The reductions in gap due to AugNN ranged from 24.4% to 50% for the twelve
heuristic combinations. The improvement in makespan due to AugNN ranged from 3.65% to 13.49%.
Depending on the application, an improvement of 13.49% in makespan or a reduction in the gap by
50% may be considered significant and worth the effort of implementing the AugNN procedure. For exam-
ple, in the manufacturing environment, an improvement in makespan of 12% translates into an increased
capacity by 12% without increasing any fixed costs. Assuming adequate demand for the product, an in-
creased capacity would translate into higher profits. It only takes a few seconds to apply the AugNN pro-
cedure. If the makespan for a one-time scheduling problem is in seconds or milliseconds, then using a
single-pass heuristic would be preferred.

The three best heuristic combinations out of 12 were HTRPTF/FAMF-CW1, HLF/FAMF-CW-2 and
HTRPTF/FAMF-CW-2. Tables 2A, 2B and 2C give the results for these three heuristics for each of the
100 problems. The table lists the makespans obtained from the single-pass heuristic as well as from
AugNN. The problems where AugNN improved upon the makespan are italicized. Table 3 summarizes

Table 3
(i) Cases where improvement may be possible, (ii) cases where ANN improved over heuristic and (iii) percent cases where ANN
improved over heuristic

Number of machines Total
5 4 3 2
Total problems 16 28 28 28 100
Improvement possible in (number of problems)
HTRPTF/FAMF-CW-1 16 28 28 28 100
HLF/FAMF-CW-2 16 27 28 28 99
HTRPTF/FAMF-CW-2 16 28 28 28 100
Number of cases where improvement occurred
AugNN HTRPTF/FAMF-CW-1 15 20 28 28 91
AugNN HLF/FAMF-CW-2 15 22 28 25 90
AugNN HTRPTF/FAMF-CW-2 13 21 27 28 89
Percent of cases where improvement occurred
AugNN HTRPTF/FAMF-CW-1 81.3 78.5 100 100 93
AugNN HLF/FAMF-CW-2 93.8 81.5 100 89.3 90.9

AugNN HTRPTF/FAMF-CW-2 75 75 100 100 88
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Table 4
Computational times® (in seconds)
Total for all 100 problems Average per problem
Heuristic ANN Heuristic ANN
AugNN HTRPTF/FAMF-CW-1 1.56 143.07 0.0156 1.43
AugNN HLF/FAMF-CW-2 1.56 142.18 0.0156 1.42
AugNN HTRPTF/FAMF-CW-2 1.56 140.23 0.0156 1.40

# Includes 10 and processing time.

the improvements in terms of number of problems for the three best heuristic combinations. Our best heu-
ristic combination (HTRPTF/FAMF-CW1) found improvement in 91% of the problems. The next two
heuristics found improvement in 90% and 89%, respectively.

Table 4 summarizes the computing times for single-pass and AugNN runs for our three best heuristic
combinations. In roughly 1.4 seconds, on average, AugNN is able to provide the solutions. Single-pass heu-
ristics are of course extremely fast, at 0.0156 seconds per problem.

It is to be noted that AugNN consistently gave significant improvements upon each of the single-pass
heuristic combinations. So, if one comes across a better base heuristic than the ones proposed in this paper,
we can count on AugNN to provide some improvement over that heuristic. We could not compare our
results with other meta-heuristics due to lack of application of other meta-heuristics to this type of
problem.

6. Summary and conclusions

In this paper, the augmented-neural-network (AugNN) approach is applied to the task-scheduling prob-
lem with non-identical machines. The AugNN approach was first applied to task-scheduling problem for
the identical machines case (Agarwal et al., 2003). This approach applies a base single-pass heuristic and
tries to improve upon the single-pass solution through a weight modification learning strategy using neu-
ral-network principles. We propose 12 base heuristics for this problem and show improvements on each of
the 12 through AugNN. The 12 heuristics are essentially combinations of four task-priority rules and three
machine-priority rules. The three machine-priority rules used in this paper have been proposed for the first
time. One of them is a greedy rule, while the other two are non-greedy. The non-greedy rules performed
significantly better than the greedy rule. We propose a modification to the original AugNN formulation
(Agarwal et al., 2003) which allows implementation of a combination of task-priority and machine-priority
rules. We also provide empirical results on 100 randomly generated problems. We found that AugNN re-
duces the single-pass heuristics gaps from the lower bound by 24.4-50%. The best single-pass heuristic gave
a gap of 16.1% from the lower bound. The best AugNN results gave us a gap of 11.5%.

This research makes two-fold contribution. First is the development of machine-priority rules for this
type of problem. Second, the AugNN formulation has been modified to handle a combination of task
and machine priority rules. Two main results emerged. One, non-greedy machine-priority rules are signif-
icantly better than the greedy ones and two, AugNN approach shows significant reduction in gaps from
single-pass heuristics, in a very short time.

A number of future research issues emerge from this study. Since the AugNN approach seems to work
well for the makespan minimization problem, it can be applied to problems with other objectives, such as
minimizing tardiness, and for other constraints, such as preemption of tasks. The multi-mode resource-con-
strained project scheduling problem can also be attempted using the AugNN approach, since the problem
bears some resemblance with the problem in this paper. Further, since other meta-heuristics such as genetic



A. Agarwal et al. | European Journal of Operational Research 175 (2006) 296-317 311

algorithms and tabu search have not been applied to this problem, they can be applied and their results
compared against the results obtained in this work.

Appendix 1

In this appendix, we describe the input, output and activation functions for the task and machine nodes.
We first list the notation used in our functions.

Notation

n number of tasks

m number of machines

k iteration number

T set of tasks = {1, ..., n}

M set of machines = {1, ..., m}
T; jth task node, j € T

M,

5 node for machine i connected from 7, ie M,jc T
RT;  remaining time of task 7}, j€ T
w; weight on the outgoing link from 7;
WOm weight on the links between machine nodes
o learning coefficient
& error in iteration k
t elapsed time in the current iteration
1 initial dummy task node
F final dummy task node
T threshold value of T; = # of tasks immediately preceding task j, j € TU F

ST; start time of 7}, j€ T

PT; processing time of machine node My, ie M,jec T

LST; latest start time of 7, j € T

PR; set of tasks that immediately precede task j, j€ TU F

NPR  set of tasks with no preceding tasks {7}|PR; is an empty set}, j € T
SU; set of tasks that immediately succeed task j, j € T

Win;  winning status of 7}, j € T

Following are all functions of elapsed time ¢:

IT(f) input function value of task nodes, j€ JTU T U F

IM,(#) input function value of machine nodes, i € M,je T

OT(r) output function value of task nodes, j€ ITUT U F

OMF;,(f) output of machine node M;; to task T, in the forward direction, i € M, j € T, p € SU;
OMR(t) output of machine node M to task T; in reverse direction, i € M, je T
OML;;,(f) output of machine node M to M,, in lateral direction, i € M, j,p € T, j#p
OMM,,,(f) output of machine node M, to M,; in lateral direction, i, 0 € M; i#o0,j € T
0T{t) activation function of task nodes, j € T

OM (1) activation function of machine nodes My, i€ M,je T

assign,(f) =1 if machine Mi assigned to task 7

S(1) set of tasks that can start at time 7. S(¢) = {T—OT[7) = 1}

MA(?) set of machines available at time ¢
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MAB((t) set of available machines whose processing times on job j is less than or equal to the sum of (wait-
ing time for the fastest machine and the processing time on the fastest machine)

The input to the algorithms is the precedence matrix and the task processing times (PT;;) matrix. As men-
tioned earlier, the solution is obtained iteratively. Before the first iteration, however, there are some preli-
minary steps to be performed. These will be described now followed by a description of the input functions,
output functions, activation functions and the learning strategies.

A.1. The preliminary steps
The following steps are performed before proceeding with the iterations.

1. Total remaining processing times (TRPT)), are calculated for every task. Calculation of TRPTs assumes
that each task will get the fastest machine.

2. Lower bound is established as
> PT, / m-‘ >
j=1

3. Weights (w;) are initialized at 10.00. The initial value is not very critical as long as it is the same for all
links in the beginning. The value 10 was used because it seems to work well. A choice of 100 would be
equally good.

4. Calculate the threshold of each task ;. The threshold of task j is defined as the number of tasks imme-
diately preceding task j. For tasks with no preceding tasks, the threshold is assigned to be 1 because a
dummy initial task with zero processing time is used. The threshold value is used to determine when a
task is ready to start.

Lower bound = max (TRPTI,

After these preliminary steps, iterations are performed. The input, activation and output functions of the
PE’s determine the flow of each iteration. End of iteration routines will be discussed later.

A.2. The input, activation and output activation functions

The neural network algorithm can be described with the help of the learning strategy and the input, acti-
vation and output functions for the task nodes and the machine nodes. The formulation for all the heuris-
tics is the same except for the assignment rule or the Activation state of machine nodes. The following
functions are described for the HRTFFM heuristic.

A.3. Task nodes
We first describe the input functions, activation states and output functions of the 7 nodes:

A.3.1. Input function
We describe the initial values, i.e. at time ¢t = 0.

IT,(0)=0 VjelUTUF.
For nodes with no preceding tasks

IT,(0) = OT,(0) = IT,(0) =1 Vj € NPR.
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All tasks with no preceding constraints get a starting signal.
Threshold of all tasks in NPR is 1 because we have added the I node.
For all other tasks i.e. Vj € NPR Az > 1

IT;(t) =IT)(t— 1)+ >_ > OMF,,(t) VieM, q€PR;, jeTUF.
i q

OMF in the above equation, described later, represents a signal of 1 sent by a machine node to a suc-
ceeding task after completing its current task. I'T(z), is thus a measure of how many tasks preceding 7; are
completed at time .

A.3.2. Activation states

The activation states of the task nodes tell us about the ready state or the state of completion of a task. A
task is either unable to start due to precedence constraints (state 1), or is ready to start (state 2) or is cur-
rently processing (state 3) or is complete (state 4). These states are a function of elapsed time z. These are
now mathematically defined.

Task nodes’ Initial Activation State (i.e. at t =0)is 1. Vie M, je T,

1if IT;(1) < 1, cannot start,

2if(0T;(t — 1) = 1V 2)AIT,(¢) = 1; can start,
0T;(1)q 3 if(0T;(t—1)=2V3)A> OMR(t) <0 processing,

4if 0T;(t—1) =4V (0T;(t—1) =34> OMR;(t) = 0) task completed.

Note: Vj € NPR, 7, = 1.

Since IT(#) can be interpreted as the number of preceding tasks (of 7;) completed at time ¢ and 7; is the
total number of preceding tasks (of 7)), when they equal, the task T;is ready to start. As long as IT(¢) <1,
T; cannot start. Once the assignment takes place the machine to which the task is assigned sends a negative
signal OMR. So when OMR is negative, we know that the task has been assigned. When the negative signal
is withdrawn, we know that the task is completed.

A.3.3. Output function

1 if 0T,(r) = 2,
0 otherwise.

orin-

When a task is ready to start (state 2), the task sends a unit signal to the machines it is connected to.
F-Node

t if ITF(t) =1Tp,
OTx(t) =
#(1) {0 otherwise.

When task F’s input equals its threshold, the scheduling for the task graph is complete and the time at
which this condition occurs is the makespan of the schedule.

A.4. Machine nodes

Input functions, activation states and output functions of machine nodes are now explained.
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A.A4.1. Input

IM,;(t) = OT;(1)" w; + Z OML,;(t) om + ZOMMi*ij(z)*wm VieM, jeT, i #i

qeS(t)

o, 1s fixed weight link between machines and is large to suppress output of task if machine is busy or as-
signed or task is assigned to other machine.

A.4.2. Activation states

The activation states of the machine nodes tell us the state of availability, assignment and processing. If a
machine is available it is in state 1. If it gets assigned it is in state 2, if it is processing a task, it is state 3.
When it finishes processing a task, it is in state 4. If a machine node of the same machine is assigned to
another task it is in state 5. For example, if M12 is in state 3 (i.e. machine M1 is currently processing task
2), then M13 and M 14 are in state 5 because they also represent machine 1, which is busy with task 2. When
a machine node is done processing a task it reaches state 6. Before we explain the states mathematically, we
describe the assignment process first.

Let () = IM;;(¢) TaskPriorityRuleParameter, Vie M,j e T.

The assignment process depends on the task-priority rule and the machine-priority rule.
For FAMF machine-priority rule,

1 if y,(¢) = max[y, (6)|VT; € S(t)] A x;(t) > O A j = argmin(PT,), j € MA(t),
0 otherwise.

assign,;(t) = {
For FAMF-CW-1 priority rule, define

PTpm,; 1s processing time of the fastest machine for task 7.
Wewm,; 18 wait on the fastest machine for task i.
PTgam,; is processing time on the fastest machine for task i.

1 if Xij(t) = max[}(,.t(t)WTj S S(l)] AN Xij(t) >0A (WFM + PTFM) > PTgam,
0 otherwise.

assign,; (1) = {
For FAMF-CW-2 priority rule, define

B(?) is set of busy machines at time ¢.
W) is wait on a busy machine ;.

1 if (1) = max(y, ()IVT; € S(1)] A (1) > 0 A min (W; + PTy;) > PTeam,
assign, (1) = { ’ JEB(®)
0 otherwise.

The task-priority rule part of the heuristic is enforced by the condition y;{(f) = max[y(1)|VT; €
S(H)]4y1) > 0.

The machine-priority part of the heuristic is enforced by the last part of the assignment condition. For
example, for FAFM, it is j = argmin(PT;), j € MA(¢) and for FAFM-CW-1, it is Weym + PTem > PTeam.

If assign;(¢) = 1, then ST, = ¢.

If |S(7)| > [MA(?)| then if assign;{¢) = 1 then Win; = 1.

If competition takes place, we need to keep track of which task won the competition.
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Task-priority-rule parameter depends on the rule. For example, it is Level for HLF, TRPT for
HTRPTF, Slack for MSF and LFT for SLFTF rule. Note that for MSF and SLFTF rules, the task param-
eter should be considered negative because the assignment is based on max y;(?).

Machine nodes’ Initial Activation State (i.e. at £ = 0) is 1.

VieM,jeT,
1 : machine available,
2 if (OMy;(t—1) =1V OM;(t) = 1) Aassign,(t) = 1 : machine busy(just assigned)
3 if (OM;(t—1)=2V3)A(t< ST, +PT)) : machine busy(in process),
4 if (OM;;(t—1)=3) A (t=ST;+PT)) : machine just released,
5 if (My;(t—1)=1)A ( S>> OML,,(#) 0 < 0) : assigned to another task,
gES(1)
oM, (t) = 6 if (0M;(t—1)=4) :machine / finished process
on task j,

1 if (OM;(t—1)=1V5)A ( > OML,,;(2)" wm = 0) : machine i not assigned to any

q€S(1)
other task,
1 if (M ,;(t—1)=1)A <Z OMM; (1) o < 0) : task assigned to another
machine.

A.4.3. Output
The output of the machine node indicates a signal to the tasks ahead that their preceding tasks are com-
plete and also a signal to other machine nodes that they are now available.

=0 if OM;(t) =1,2,3,5,6 1,] y VP i)
OMR. — -1 if 0M,:;(t)22,3 ViieT
v 0 if OMij(t):1a4a556 b 7
OML. . — -1 if OM;(t) = 2,3 Vi,je T,YpeS(t),p#J
P00 i oMy = 1,456 TP o
Yo if OMij(t) = 1,4,5,6 L] U F£

The output of F represents the makespan and the assign;(¢) gives the schedule. If a machine is either as-
signed or released during a certain time unit, all functions need to be recalculated without incrementing
the time period.

A.4.4. Learning strategy

A learning strategy is required to modify the weights. The idea behind weight modification is that if the
error is too high, then different machines should be winners during subsequent iteration. Since the machine
with the highest value of y;, is the winner, an increase of weights will make the machine more likely to win
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and conversely a decrease of weight will make it less likely. The magnitude of change should be a function
of the magnitude of the error and of the level of the task. Keeping these points in mind, the following learn-
ing strategy for the links that determine priority is used.

Winning tasks: If Win; =1 then (w;),,, = (»;), —«'RTj&x Vj €T,
Non-winning tasks: If Win; = 0 then (w;);,, = (v;); + *'RTje, VjeT.

A.4.5. End of iteration routines

1. Calculate the error i.e., the difference between obtained makespan and the lower bound. The lower
bound was obtained during the preliminary steps.

2. Store the best solution so far.

3. Sense convergence i.e., if the solution has not changed in the last 10 iterations, stop the program. The
value of 10 was also arrived at after some computational experience.

4, If the number of iterations is greater than 1000, stop the program. Most solutions were obtained in less
than 100 iterations. So, there is enough margin of safety in running the program for up to 1000
iterations.

If continuing with the next iteration, modify weights using the learning strategy.
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