
Non-Greedy Heuristics and Augmented Neural Networks for the Open-Shop
Scheduling Problem

Selcuk Colak, Anurag Agarwal

Department of Decision and Information Sciences, Warrington College of Business Administration, University of Florida,
P.O. Box 117169, Gainesville, Florida 32611-7169

Received 22 June 2004; accepted 16 May 2005
DOI 10.1002/nav.20102

Published online 25 July 2005 in Wiley InterScience (www.interscience.wiley.com).

Abstract: In this paper we propose some non-greedy heuristics and develop an Augmented-Neural-Network (AugNN)
formulation for solving the classical open-shop scheduling problem (OSSP). AugNN is a neural network based meta-heuristic
approach that allows integration of domain-specific knowledge. The OSSP is framed as a neural network with multiple layers of
jobs and machines. Input, output and activation functions are designed to enforce the problem constraints and embed known
heuristics to generate a good feasible solution fast. Suitable learning strategies are applied to obtain better neighborhood solutions
iteratively. The new heuristics and the AugNN formulation are tested on several benchmark problem instances in the literature and
on some new problem instances generated in this study. The results are very competitive with other meta-heuristic approaches,
both in terms of solution quality and computational times. © 2005 Wiley Periodicals, Inc. Naval Research Logistics 52: 631–644, 2005.

Keywords: scheduling; open shop; neural networks; heuristics

1. INTRODUCTION

The classical open shop scheduling problem (OSSP) is a
well-known scheduling problem. It involves a collection of
n jobs J1, J2, . . . , Jn and m machines M1, M2, . . . , Mm.
Each job Ji requires m operations Oi1, Oi2, . . . , Oim where
Oij has a processing time of pij � 0 and has to be processed
on machine Mj. The operations in each job may be pro-
cessed in any order. Each machine can process at most one
operation at a time and each job can be processed by at most
one machine at a time. Further, operations cannot be pre-
empted; i.e., they must be processed without interruption.
The objective is to obtain a feasible schedule with the
minimum makespan. The OSSP, like many other scheduling
problems, has received wide attention in the literature due to
its applications in manufacturing. Algorithmic improve-
ments in finding better solutions faster for these scheduling
problems have cost-saving implications for many types of
manufacturing activities.

We apply a new approach called augmented neural net-
works (AugNN) for solving the OSSP. Agarwal, Jacob, and
Pirkul [1, 2] first applied the AugNN approach successfully
to the task-scheduling problem. The approach is a hybrid of

heuristics and neural-network approaches. It allows one to
combine the advantages of heuristics approaches, i.e., find-
ing good solutions fast, and adaptive learning approaches,
i.e., finding better neighborhood solutions iteratively. The
AugNN approach allows fast convergence, compared to
other meta-heuristics such as genetic algorithms, simulated
annealing, tabu search, and ant colonies.

We test the AugNN approach on some well-known ex-
isting heuristics for the OSSP and also explore several new
heuristics to obtain very good results (optimal or near-
optimal) in relatively few iterations. Our results are based
on some benchmark problems of sizes 15 � 15 and 20 � 20
by Taillard [24] and 10 � 10 by Gueret and Prins [12], and
also some new larger problems of sizes 25 � 25, 30 � 30,
50 � 50, and even 100 � 100 generated in this study.

This study makes several contributions. First, the AugNN
formulation for the OSSP is developed for the first time.
Second, a new greedy heuristic called DS/LTRPAM is
developed and non-greedy versions of this and other greedy
heuristics are proposed. The non-greedy versions of DS/
LTRPAM gave the best results. Third, we apply new learn-
ing strategies not proposed earlier in the AugNN literature.
Fourth, new benchmark problems of sizes 25 � 25, 30 �
30, 50 � 50, and 100 � 100 are generated. Except Alcaide,
Sicilia, and Vigo [3], the other authors have restricted theirCorrespondence to: A. Agarwal (aagarwal@ufl.edu)

© 2005 Wiley Periodicals, Inc.



evaluations, for comparison purposes, to standard instances
with up to 20 jobs–20 machines.

The rest of the paper is organized as follows. Section 2
presents a literature review for the OSSP. Section 3 de-
scribes the various heuristic dispatching rules used in this
study. The AugNN formulation for the OSSP is explained in
detail in Section 4. In Section 5, computational results are
presented and discussed. Finally, Section 6 provides a sum-
mary of the paper and discusses future research ideas.

2. LITERATURE REVIEW

Gonzales and Sahni [10] presented a polynomial time
algorithm for solving the OSSP for the case m � 2. They
also showed that the non-preemptive OSSP is NP-hard for
m � 3. Pinedo [21] proposed the longest alternate process-
ing time first dispatching rule that solves the two-machine
problem optimally. A branch-and-bound method for the
general OSSP is developed by Brucker et al. [7]. Their
method solved some benchmark problems in the literature
to optimality for the first time. Gueret, Jussien, and Prins
[11] improved the Brucker’s algorithm by using an intelli-
gent backtracking technique. Dorndorf, Pesch, and Phan-
Huy [8] implemented another branch-and-bound algorithm
based on constrained-propagation methods to reduce the
search space. Branch-and-bound algorithms, in general, fail
to provide good solutions for larger problem instances in
reasonable time.

To overcome the computational complexity of finding
optimal solutions, a variety of heuristics have been pro-
posed for finding good suboptimal solutions fast. The liter-
ature is replete with such heuristics for all types of sched-
uling problems including OSSP. Gueret and Prins [13]
presented two heuristics—(1) list-scheduling algorithm with
two priorities and (2) based on the construction of match-
ings in a bipartite graph. Brasel, Tautenhahn, and Werner
[6] implemented constructive insertion algorithms. Liaw
[17] developed an iterative improvement approach based on
Bender’s decomposition. Meta-heuristic approaches such as
tabu search, simulated annealing, genetic algorithms, and
ant colonies have also been used for the OSSP. For exam-
ple, Taillard [24] used tabu search to solve many open-shop
problems to optimality. Taillard has also developed many
randomly generated scheduling problems for the OSSP,
which are used as benchmark problems in the literature.
Alcaide, Sicilia, and Vigo [3] proposed tabu search algo-
rithm as well, which uses simple list scheduling algorithms
to build the starting solutions. They have tested the algo-
rithm on instances up to 50 machines and 100 jobs. Another
tabu search algorithm for the OSSP is applied by Liaw [18].
He also introduced a neighborhood-search algorithm using
simulated annealing [19]. Several genetic algorithms have
been proposed for the OSSP by Khuri and Miryala [16],

Liaw [20], and Prins [22]. Blum [4, 5] developed ant-
colony-optimization approaches for the OSSP.

Neural networks, besides being used for data mining
tasks such as classification, clustering and pattern recogni-
tion, have been used for solving optimization problems as
well. Hopfield and Tank [15] first applied neural networks
to the traveling-salesman problem, a classic combinatorial
optimization problem. The Hopfield and Tank approach was
applied to the job-shop scheduling problems by Foo and
Takefuji [9] and Sabuncuoglu and Gurgun [23]. While this
approach worked for smaller problem instances (up to 5 �
5), it failed to provide good solutions in reasonable time, for
larger problem instances such as (10 � 10). Agarwal, Jacob,
and Pirkul [1, 2] proposed a different kind of approach for
using neural networks, called the augmented-neural-net-
work approach, for solving scheduling problems. Essen-
tially, it is a hybrid of the heuristic and iterative learning
approaches. In this approach, a scheduling problem is
framed as a neural network, with layers of processing ele-
ments and connection weights, in a manner that allows one
to integrate the problem specific knowledge with adaptive
learning. It also allows a given heuristic to be embedded in
the solution procedure. This approach converges very fast
and gives near optimal solutions for even larger problems in
reasonably small number of iterations.

Since we are embedding a heuristic in the AugNN ap-
proach, it is important to work with a good heuristic. We use
some existing greedy heuristics and propose non-greedy
variations of these heuristics. In addition we develop a new
greedy heuristic and its non-greedy variations. We first
describe these heuristics briefly in the next section before
describing the AugNN formulation in the following section.

3. HEURISTICS

In this section we explain some heuristics to find feasible
solutions for the OSSP in each iteration of the AugNN
approach.

1. Job TRPT Machine PT Rule: If only one job is
ready to start and machines are available for the
unfinished operations of this job then the operation
with the highest processing time (PT) is assigned
to its machine. If no machines are available for this
job, the job waits. If more than one job is ready to
start, then the job with the highest total remaining
processing time (TRPT) is considered first. TRPT
is also known in the literature as MWR (Most
Work Remaining).

2. Job TRPT Machine PT Rule Non-Greedy: This is
our non-greedy variation of the above heuristic. It
works the same as above except that, before mak-
ing the assignment decision for the job with the

632 Naval Research Logistics, Vol. 52 (2005)



highest TRPT and the operation with the highest
PT, we check whether the remaining slack on this
job is greater than the time the next operation will
be complete. If the next operation is due to com-
plete before the remaining slack of the job in
question, we wait till the next operation is com-
plete. Slack for a job is defined as the difference
between the total processing time of the longest
job and the job in question. So, the slack of the
longest job is zero. Remaining slack for a job is the
difference between the original slack and the slack
consumed by the job.

3. Job TRPT Machine RPT Rule: If only one job is
ready to start and machines are available for the
unfinished operations of this job then the machine
with the highest remaining processing time (RPT)
is assigned to this job. If no machines are available
for this job, then the job waits. If more than one
job is ready to start, then the job with the highest
total remaining processing time (TRPT) is consid-
ered first.

4. Job TRPT Machine RPT Rule Non-Greedy: This is
our non-greedy variation of the above heuristic. It
works the same as above except that before mak-
ing the assignment decision for the job with the
highest TRPT and the machine with highest RPT,
we check whether the remaining slack on this job
is greater than the time the next operation will be
complete. If the next operation is due to complete
before the remaining slack of the job in question,
we wait till the next operation is complete.

5. DS/LTRP Rule: This rule is used by Liaw [17–19]:
Whenever a machine is idle, select among its
available operations, the operation belonging to
the job that has the longest total remaining pro-
cessing time on other machines (LTRPOM) for
this job (i.e., excluding the operation on the ma-
chine in question) to process next. If there is no
available operation, the machine remains idle until
the next operation has been completed on some
other machine. If more than one machine is idle at
the same time, select the machine with the longest
remaining processing time on that machine.

6. DS/LTRP Rule Non-Greedy with Job Slack: This
is our non-greedy variation of the above heuristic.
It works the same as above except that before
making the assignment decision for the job with
LTRPOM and the machine with highest RPT, we
check whether the remaining slack on this job is
greater than the time the next operation will be
complete. If the next operation is due to complete
before the remaining slack of the job in question,
we wait till the next operation is complete.

7. DS/LTRP Rule Non-Greedy with Machine Slack:
This is another non-greedy variation of the above
heuristic. It works the same as the DS/LTRP heu-
ristic except that before making the assignment
decision for the job with LTRPOM and the ma-
chine with highest RPT, we check whether the
remaining slack on this machine is greater than the
time the next operation will be complete. If the
next operation is due to complete before the re-
maining slack of the machine in question, we wait
till the next operation is complete. Slack for a
machine is defined as the difference between the
total processing time on longest processing time
machine and machine in question. Remaining
slack for a machine is the difference between the
original slack for that machine and the slack con-
sumed by it.

8. DS/LTRPAM Rule: Whenever a machine is idle;
select, among its available operations, the opera-
tion belonging to the job that has the longest total
remaining processing time (including the opera-
tion on the machine in question) to process next. If
there is no available operation, the machine re-
mains idle until the next operation has been com-
pleted on some other machine. If more than one
machine is idle at the same time, select the ma-
chine with the longest remaining processing time
on that machine. This is a new heuristic we are
proposing in this study.

9. DS/LTRPAM Rule Non-Greedy with Job Slack:
This heuristic is the same as above except that
before making the assignment decision for the job
with TRP and the machine with highest RPT, we
check whether the remaining slack on this job is
greater than the time the next operation will be
complete. If the next operation is due to complete
before the remaining slack of the job in question,
we wait till the next operation is complete.

10. DS/LTRPAM Rule Non-Greedy with Machine
Slack: This heuristic is the same as DS/LTRPAM
rule above except that before making the assign-
ment decision for the job with TRP and the ma-
chine with highest RPT, we check whether the
remaining slack on this machine is greater than the
time the next operation will be complete. If the
next operation is due to complete before the re-
maining slack of the machine in question, we wait
till the next operation is complete.

We now explain the formulation of the AugNN approach
for the OSSP in the following section.

633Colak and Agarwal: Augmented-Neural-Networks Approach



4. AUGMENTED NEURAL NETWORK
FORMULATION

The general idea of the AugNN formulation is that we
first convert a given OSSP into a neural network, with input
layer, hidden layers, and output layer of neurons or process-
ing elements (PEs). We define connections between these
layers, characterized by weights. Input, activation, and out-
put functions are designed for each node so as to enforce the
constraints of the problem and embed a heuristic to generate
a feasible solution in one pass (iteration) of the neural

network. An iteration consists of calculating all the func-
tions of the network from the input up to the output layer.
We then apply a learning strategy to modify the weights on
the connections such that learning takes place and better
solutions are obtained in subsequent iterations.

We will now describe, with the help of an example, how
to convert a given problem into a neural network. We will
take a simple 3 � 3 problem for this purpose. Figure 1
shows the neural network architecture for this problem. In a
3 � 3 problem, there are 3 jobs, each with 3 operations, for

Figure 1. Neural network architecture for the AugNN approach for a 3 � 3 problem.

634 Naval Research Logistics, Vol. 52 (2005)



a total of 9 operations (O11, O12, O13, O21, O22, O23, O31,
O32, and O33). We create three operation layers, corre-
sponding to the three operations of each job. Each operation
layer has three nodes corresponding to each job. Note that
for a more general n � m case, there would be m operation
layers, each with n nodes. Following each operation layer is
a machine layer with 9 nodes each. Each of the three
operation nodes is connected to three machine nodes for a
total of 9 machine nodes. For a more general n � m case,
there would be nm machine nodes in each machine layer.
So, for example, operation O21 is connected to three ma-
chine nodes labeled M211, M212, and M213. Operation layer
1 can be considered as the input layer of a neural network.
The remaining operation layers and machine layers can be
considered as hidden layers and a final node acts as the
output layer. Connections between operation nodes and
machine nodes are characterized by weights. These weights
are all the same for the first iteration, but are modified for
each subsequent iteration. There are also connections be-
tween machine nodes and subsequent operation nodes,
which are not characterized by any weights. These connec-
tions serve to pass signals from one layer to the next to
trigger some functions.

There are three types of connections between machine
nodes. In the first type, each machine node is connected to
nodes of other machines for the same operation. For exam-
ple, M111 is connected to M112 and M113. These connec-
tions are used to enforce the constraint that the same oper-
ation cannot be processed by more than one machine at the
same time. In the second type, each machine node is con-
nected to nodes of the same machine on other operations of
other jobs. For example, M111 is connected to M211, M311,
M221, M231, M321, and M331. These connections are used
to enforce the constraint that the same machine cannot
process more than one operation at the same time. In the
third type, each machine node is connected to nodes of the
same machine for other operations of the same job. So for
example, M111 is connected to M121 and M131. These
connections are used to ensure that the same machine is not
assigned to the same job more than once.

Machine nodes are also connected to the operation nodes
in the reverse direction. Whenever a job is assigned to a
machine, the machine node sends a signal to the operation
node, indicating to the operation that it has been assigned.
This signal changes the state of the operation node and
triggers other functions.

We now describe the input, activation, and output func-
tions for each node and the learning strategy for the weights.
We will need the following notation to describe our func-
tions:

N Number of jobs
M Number of machines

c Current iteration
J Set of jobs � {1, . . . , n}
Ji Job i, i � J
M Set of machines � {1, . . . , m}
Mk Machine k, k � M
O Set of operations � {1, . . . , m}
Oij ijth operation node, i � J, j � O
Mijk Node for machine k, connected from Oij, i �

J, j � O, k � M
TRPj Total Remaining Processing time for job j,

j � J
�ik Weight on the link from Oi* to Mi*k machine

nodes, i � J, k � M
�m Weight on the links between machine nodes
� Learning coefficient
�c Error in iteration c
OF Final dummy operation node
STijk Start time of Oij on Mk, i � J, j � O, k �

M
PTik Processing time of Ji on Mk, i � J, k � M
Winij Winning status of job Ji on machine Mj, i �

J, j � M
(�NG)ij Weight for waiting for operation Oij. NG

stands for Non-Greedy
T Elapsed time
JPTi Job Processing Time for job i � sum of PT

of all operations for job i
CJPT Critical Job Processing Time � Max of all

JPTi, i � J
JSLKi Slack for job i � CJPT � JPTi, i � J
MPTk Machine Processing Time for machine k �

Sum of PT of all operations on machine k
CMPT Critical Machine Processing Time � Max of

all MPTk, k � M
MSLKk Slack for machine k � CMPT � MPTk, k �

M

Following are all functions of elapsed time t:

IOij(t) Input function value of operation node
Oij, i � J, j � O

IOF(t) Input function value of operation node
OF

IMijk(t) Input function value of machine node k
from operation Oij, i � J, j � O,
k � M

OOij(t) Output function value of operation node
Oij, i � J, j � O

OOF(t) Output function value of operation node
OF

OMFijkpq(t) Output of machine node Mijk to Opq in
the forward direction, i, p � J, j,
q � O, k � M, q � m

635Colak and Agarwal: Augmented-Neural-Networks Approach



OMFijkF(t) Output of machine node Mijk to OF in
the forward direction, i � J, j � m,
k � M

OMRijk(t) Output of machine node Mijk to Oij in
reverse direction, i � J, j � O, k �
M

OMLijkpq(t) Output of machine node Mijk to Mpqk in
lateral direction, i, p � J, j, q � O,
k � M, i � p

OMMijkp(t) Output of machine node Mijk to Mijp in
lateral direction, k, p � M , k � p,
i � J, j � O

OMMFijkp(t) Output of machine node Mijk to Mipk in
forward direction, i � J; p, j � O,
k � M, p � j

�Oij(t) Activation function of operation node
Oij, i � J, j � O

�Mijk(t) Activation function of machine node
Mijk, i � J, j � O, k � M

assignijk(t) Operation Oij assigned to machine Mk

S(t) Set of operations that can start at time t.
S(t) � {Oij � OOij(t) � 1}

JSLKUi(t) Slack of job i used up at time t, i � J
MSLKUk(t) Slack of machine k used up at time t,

k � M
RSJi(t) Remaining slack of job i � JSLKi �

JSLKUi(t), i � J
RSMk(t) Remaining slack on machine k �

MSLKk � MSLKUk(t), k � M

The neural network algorithm can be described with the
help of the input functions, the activation functions, and the
output functions for the operation nodes and the machines
nodes and the learning strategy.

4.1. AugNN Functions

4.1.1. Operation Nodes

Input functions, activation states, and output functions are
now explained for the operation nodes.

Input functions:

IOij�0� � 1 � i � J, j � 1, (1)

IOij�0� � 0 � i � J, j � O, j � 1, (2)

IOF�0� � 0. (3)

These functions at time t � 0 provide initial signals to the
operation layers. The first operation nodes (i.e., for j � 1)
of all the jobs get a starting signal of 1 at time 0 [Eq. (1)].

The remaining operation layers get a signal of 0 [Eq. (2)]
and the final output layer also gets a signal of 0 [Eq. (3)].

For time t � 0, we have the following functions. For all
other operations, i.e., @ j � 1 ∧ t � 0

IOij�t� � IOij�t 	 1� 
 �
k

OMFijkpq�t� � i, p � J,

i � p, j � q 
 1, j, q � O, k � M, q � m, (4)

IOF�t� � IOF�t 	 1� 
 �
i

�
k

OMFijkF�t�,

j � m, � k � M, i � J, j � O. (5)

IOij [Eq. (4)] helps to enforce the constraint that a new
operation of a job cannot start unless the current operation
is complete. At t � 0, IOij is 0. When an operation node
gets a signal from the machine node (OMF, described later),
IOij becomes 1, which indicates that it is ready to start. IOF

[Eq. (5)] is the input of the final node. It gets an input from
all the machines nodes of all the jobs. When IOF becomes
n, we know that all jobs are done.

Activation function: Operation nodes’ initial activation
state (i.e., at t � 0) is 1.

� i � J, j � O,

�Oij�t� � �
1 if IOij(t) � 0
2 if (�Oij(t 	 1) � 1 ∨ 2) ∧ IOij(t) � 1

3 if (�Oij(t 	 1) � 2 ∨ 3) ∧ �
k

OMRijk(t) � �1

4 if �Oij(t 	 1) � 4

∨ ��Oij(t 	 1) � 3 ∧ �
k

OMRijk(t) � 0�
State 1 above implies that operation Oij is not ready to be
assigned because input to this operation is still 0. State 2
implies that the operation is ready to be assigned to a
machine because its input is 1. State 3 implies that the
operation is in process because it is receiving a negative
signal from a machine k that it is currently being pro-
cessed. State 4 implies that the operation is complete and
the negative signal from machine k is no longer there.

Output functions: For all heuristics not using the non-
greedy scheme (heuristics 1, 3, 5, 8), we have the following
output function for the operation nodes:

636 Naval Research Logistics, Vol. 52 (2005)



OOij�t� � � 1 if �Oij�t� � 2 � i � J, j � O,
0 otherwise.

If an operation is ready to start [i.e., �Oij(t) � 2], then the
operation node sends a unit signal to each machine node that
it can be assigned.

For all heuristics that use non-greedy job slack (heuristics
2, 4, 6, and 9 of Section 3), we have the following functions:

OOij�t� � �
1 if �Oij(t) � 2 ∧ (�NG)ij � RSJi(t)

� min
k

{STi*jk 
 PTi*k 	 t}, i* � i,

� i � J, j � O, k � M,
0 otherwise.

If an operation is ready to start [i.e., �Oij(t) � 2] and the
weighted remaining slack on the job is less than the least
(start time � processing time � elapsed time) of all other
jobs, then the operation node sends a unit signal to each
machine node that it can be assigned.

For all heuristics that use non-greedy machine slack
(heuristics 7 and 10 of Section 3), we have the following
functions:

OOij�t� � �
1 if �Oij(t) � 2 ∧ (�NG)ij� RSMk(t)

� min
k

{STi*jk 
 PTi*k 	 t}, i* � i

� i � J, j � O, k � M,
0 otherwise.

If an operation is ready to start [i.e., �ij(t) � 2] and the
weighted remaining slack on the machine is less than the
least (start time � processing time � elapsed time) of all
other jobs, then the operation node sends a unit signal to
each machine node that it can be assigned.

F-Node

OOF�t� � � t if IOF�t� � n,
0 otherwise.

The final node outputs the makespan (t), the moment it
receives n signals (one from each job) indicating that all
jobs are complete.

4.1.2. Machine Nodes

Input, activation, and output functions of machine nodes
are now explained.

Input function:

IMijk�t� � OOij�t� � �ij 
 �
S�t�

OMLijkpq�t� � �m


 �
k*

OMMijk*k�t� � �m 
 �
p

OMMFijkp�t� � �m

� i � J, j, p � O, k* � k (6)

There are four components of IMijk(t). The first component
(OOij(t) � �ik) is the weighted output from operation node
Oij. Whenever it is positive, it means that machine k is
being requested by operation Oij for assignment. Remember
OOij becomes 1 when it is ready to be assigned. The second
and third components are either zero or large negative. The
second component becomes large negative whenever ma-
chine k is already busy with another operation. The third
component becomes large negative whenever operation Oij

is assigned to another machine. �m is a fixed weighted link
between machines and is large negative to suppress the
output of an operation if the machine is busy or assigned or
the operation is assigned to another machine. The fourth
component enforces the constraint that the same machine
cannot operate on more than one operation of a job.

Activation function:

assignijk�t�

� �
1 if Max�IMijk�t� � FirstHeuristicParameter�

∧ Max�SecondHeuristicParameter� ∧ IMijk�t� � 0,
� i � J, j � O, k � M,

0 otherwise.

We have mentioned earlier that the AugNN functions, in
addition to enforcing the constraints of the problem, also help
embed a chosen heuristic into the problem. We have also seen
how using the output of the operation node, the non-greedy
aspect of a heuristic was implemented. Through the assign
function, the rest of the heuristic is implemented. The assign-
ment takes place if the product of input of the machine node
and the heuristic dependent parameter (such as PT or TRPT or
RPT of Machine) is positive and highest. The requirement for
it being positive is to honor the inhibitory signals. The require-
ment for highest is what enforces the chosen heuristic.

First or Second HeuristicParameter depends on the chosen
heuristic. One of them is job dependent, and the other is
machine dependent. They need to be evaluated in a given
order. For a particular heuristic, there may not be a second
parameter.

Job Dependent Heuristic Parameters

� TRPTj Total remaining proc time.

Machine Dependent Heuristic Parameters

� � RPTk Remaining proc time on machine k.
PTik Proc time of job i on machine k.

If assignijk�t� � 1, then STijk � t.

Whenever an assignment takes place, we
record the start time of the operation
Oij on machine k.

637Colak and Agarwal: Augmented-Neural-Networks Approach



If �S(t)� � 1, then if assignijk(t) � 1, then Winik � 1.
The Winik term will be used later during the learning strat-

egy. We want to modify the weights of links based on whether

a particular operation node won the competition in case there
was more than one node competing for assignment.

Machine nodes’ Initial Activation State (i.e., at t � 0) is 1.

� i � M, j � T,

�Mijk�t� � �
1 : machine available
2 if (�Mijk(t 	 1) � 1 ∨ �Mijk(t) � 1) ∧ assignijk(t) � 1 : machine busy (just assigned)
3 if (�Mijk(t 	 1) � 2 ∨ 3) ∧ t � STijk 
 PTik : machine busy (processing)
4 if �Mijk(t 	 1) � 3 ∧ t � STijk 
 PTik : machine processed

5 if �Mijk(t 	 1) � 1 ∧ �
p�S�t�

OMLijkpq(t) � �m � 0 : assigned to another job

6 if �Mijk(t 	 1) � 4 : machine k is finished processing Oij

1 if (�Mijk(t 	 1) � 1 ∨ 5) ∧ �
p�S�t�

OMLijkpq(t) � �m � 0 : released by other job or not assigned to any other job

1 if �Mijk(t 	 1) � 1 ∧ �
k*

OMMijk*k(t) � �m � 0 : available but operation assigned

At t � 0, all machines are ready to start (State 1). When an
assignment occurs on a machine, that machine enters state
2. State 2 turns into state 3 the following time unit, and state
3 continues till the machine is processing a job. As soon as
a machine is done processing, it enters state 4. When a
particular machine node is assigned to a job, all other nodes
that represent the same machine are given state 5. For
example, if machine node M111 is assigned to operation O11

then machine nodes M211, M311 enter state 5. In state 5,
they cannot be assigned to an operation. When a machine is
finished processing an operation, it reaches state 6. A ma-
chine node enters the state of 1 from a state of 5 if it stops
receiving a negative signal from other machine nodes.

Output functions:

OMFijkpq�t� � � 1 if �Mijk(t) � 4,
0 if �Mijk(t) � 1, 2, 3, 5, 6,

� i, p � J, j, q � O, k � M, p � i 
 1.

Whenever a machine node is done processing an operation,
i.e., it reaches state 4, it sends a signal to the operation ahead
of it that it might start.

OMRijk�t� � � �1 if �Mijk(t) � 2, 3,
0 if �Mijk(t) � 1, 4, 5, 6,

� i � J, j � O, k � M.

Whenever a machine node is busy processing an operation
(i.e., in states 2 or 3), it sends a negative signal to the
operation node that it is processing. This helps switch the
state of the operation node from 2 to a 3.

OMLijkpq�t� � � 1 if �Mijk(t) � 2, 3,
0 if �Mijk(t) � 1, 4, 5, 6,

� i, p � J, j, q � O, k � M, p � i.

Whenever a machine node is busy processing an operation
(i.e., in states 2 or 3), it also sends a signal to the machine
nodes corresponding to the same machine for other jobs in
the same machine layer. This makes this machine ineligible
to take up other jobs, because these machine nodes receive
a high negative IM. This scheme enforces the constraint that
the same machine cannot operate on two jobs at the same
time.

OMMijk*k�t� � � 1 if �Mijk(t) � 2, 3
0 if �Mijk(t) � 1, 4, 5, 6,

� i � J, j � O, k � M, k* � k.

Whenever a machine node is busy processing an operation
(i.e., in states 2 or 3), it also sends a signal to other machine
nodes in the same layer for the same job. This makes these
other machine nodes ineligible to take up the same job,
because the other machines receive a high negative IM. This
scheme enforces the constraint that the same operation
cannot be processed by more than one machine at the same
time.

OMMFijkp�t� � � 1 if �Mijk(t) � 2, 3
0 if �Mijk(t) � 1, 4, 5, 6,

� i � J, p, j � O, k � M, p � j.

Whenever a machine node is busy processing an opera-
tion (i.e., in states 2 or 3), it also sends a signal to

638 Naval Research Logistics, Vol. 52 (2005)



machine nodes corresponding to the same machine in
other machine layers in the forward direction for the
same job. This ensures that the same machine is not
assigned to the same job more than once. The output of
F represents the makespan, and the assignijk(t) gives the
schedule. If a machine is either assigned or released
during a certain time unit, all functions need to be recal-
culated without incrementing the time clock.

Learning strategy: A learning strategy is required to modify the
weights. The idea behind weight modification is that if the error is
too high, then the probability of different machines being winners
is higher during subsequent iteration. Since the machine with the
highest value of IM, is the winner, an increase of weights will
make the machine more likely two in and conversely a decrease of
weight will make it less likely. The magnitude of change should
be a function of the magnitude of the error and of some job
parameter, such as processing time. Keeping these points in mind,
the following learning strategy is used for the weights on the links.

Winning tasks: If Winik � 1, then ��ik�c 
 1 � ��ik�c 	 � � PTik � �c � i � J, k � M.

Non-winning tasks: If Winik � 0, then ��ik�c 
 1 � ��ik�c 
 � � PTik��c � i � J,k � M.

We modify the weights for non-greedy heuristics wNG as
follows:

���NG�ik�c�1 � ���NG�ik�c 
 � � PTik � �c.

In addition to these weight changes in each iteration, we
propose two additional features that govern learning,
namely, reinforcement and backtracking. These features are
explained here briefly.

Reinforcement: Neural networks use the concept of posi-
tive reinforcement of weights if the network performs well.
We implement this idea of reinforcement by implementing
the following rule. If in a particular iteration the makespan
improves, the weight changes of that iteration with respect
to the previous iteration are magnified by a factor called the
reinforcement factor (RF). We test several reinforcement
factors from 1 through 5 to see which factor works better
overall. We found that an RF of 4 worked well for most
problems.

��ik�c�1 � ��ik�c�1 
 RF � ���ik�c�1 	 ��ik�c�.

Backtracking: Sometimes it is possible to not obtain any
improvement over several iterations. When this happens, it
is best to abandon that search path and start over from the
previous best solution weights. We can parametrize how
many iterations of no improvement to tolerate. This back-
tracking technique was part of our learning strategy. In
order to do this, we store the set of weights corresponding
to the best solution obtained so far and revert back to it
whenever solution does not improve for some iterations.

End of iteration routines:

1. Calculate the gap (the difference between obtained
makespan and the lower bound). Lower bound is

the maximum amount of time that a job or machine
requires.
Lower Bound

� max�max
k
��

i�1

n

PTik�, max
i
��

k�1

m

PTik��.

The lower bound can be calculated once at the
beginning.

2. Store the best solution so far.
3. If the lower bound is reached, or if the number of

iterations is greater than a specified number, stop
the program.

4. If continuing with the next iteration, modify
weights using the learning strategy. Apply back-
tracking and reinforcement, whenever necessary.

5. COMPUTATIONAL EXPERIMENTS
AND RESULTS

Three sets of problems are used to evaluate the perfor-
mance of our algorithm. The first set consists of benchmark
problems by Taillard [24]. We focused on the larger prob-
lems (15 � 15 and 20 � 20). These square problems are
harder to solve than the problems in which the number of
jobs and the number of machines are different (Taillard
[24]). The second set of problems we use is from Gueret and
Prins [12]. We focus on ten problem instances of size 10 �
10. The third set of problems was generated by us. These
problems are of larger size—25 � 25, 30 � 30, 50 � 50,
and 100 � 100. We generate 10 problems of each size. The
processing times were integers, generated using uniform
distribution in the interval [1, 99].

The AugNN approach was coded in Visual Basic 6.0
running on Windows-XP� operating system and imple-
mented on a Celeron-900 personal computer. In our imple-

639Colak and Agarwal: Augmented-Neural-Networks Approach



mentation, the learning coefficient � is set to 0.001 and the
weights are initialized at 1. An initial solution is generated
using the heuristics given in Section 3. The weights are
modified after each iteration, using the learning strategies
explained in Section 4. The stopping criterion is to stop if
the solution is equal to the lower bound or if a predeter-
mined number of maximum iteration is reached. we set the
maximum number of iterations to 1500 for Taillard’s in-
stances of size 15 � 15, and 20 � 20 and 5000 for the
Gueret and Prins instances. For the new instances we run
500 iterations for 25 � 25, 30 � 30, and 50 � 50 and 200
for 100 � 100 problems.

Table 1 shows the results for Taillard’s benchmark prob-

lems. We ran AugNN in conjunction with all 10 heuristics
for all problems. So, for each problem instance, we have 10
results. In the interest of space, we report the best AugNN
result. In addition, we report the results of “DS/LTRPAM
Non-Greedy with Job Slack” heuristic, which performed the
best amongst all ten heuristics. Note that DS/LTRPAM
heuristic was proposed in this study.

For each problem instance we report the lower bound
(LB), the initial single-pass solution of the heuristic which
gave the best result with AugNN, the best AugNN solution
(AugNN Best), the solution gap from the lower bound in
percentage (Solution Gap (Best)) � {((AugNN Best �
LB)/LB) � 100}, and the percent improvement from the

Table 2. Results for Gueret and Prins instances.

Problem
instance

Lower
bound

Single pass
best AugNN best

Solution gap
AugNN best

(%)
Improvement from

single pass (%)
AugNN DS/LTRPAM

NG job slack

Solution gap with
AugNN

DS/LTRPAM
NG JS (%)

gp10-01 1059 1305 1113 5.10% 14.71% 1113 5.10%
gp10-02 1065 1328 1117 4.88% 15.89% 1117 4.88%
gp10-03 1046 1265 1104 5.54% 12.73% 1104 5.54%
gp10-04 1045 1210 1098 5.07% 9.26% 1098 5.07%
gp10-05 1044 1249 1095 4.89% 12.33% 1095 4.89%
gp10-06 1055 1301 1074 1.80% 17.45% 1074 1.80%
gp10-07 1075 1218 1084 0.84% 11.00% 1098 2.14%
gp10-08 1047 1264 1104 5.44% 12.66% 1105 5.54%
gp10-09 1065 1396 1130 6.10% 19.05% 1130 6.10%
gp10-10 1057 1353 1099 3.97% 18.77% 1099 3.97%

Table 1. Results for Taillard’s instances.

Problem
instance

Lower
bound

Single
pass best

AugNN
best

Solution gap
AugNN best

(%)
Improvement from

single pass (%)
AugNN DS/LTRPAM

NG job slack

Solution gap with
AugNN

DS/LTRPAM
NG JS (%)

tai15 � 15 a 937 998 937 0.00 6.11 937 0.00
tai15 � 15 b 918 957 918 0.00 4.07 920 0.22
tai15 � 15 c 871 929 871 0.00 6.24 871 0.00
tai15 � 15 d 934 1033 934 0.00 9.58 934 0.00
tai15 � 15 e 946 1020 946 0.00 7.25 946 0.11
tai15 � 15 f 933 1101 933 0.00 15.25 933 0.00
tai15 � 15 g 891 939 891 0.00 5.11 891 0.00
tai15 � 15 h 893 971 893 0.00 8.03 893 0.00
tai15 � 15 i 899 989 901 0.22 8.89 907 0.88
tai15 � 15 j 902 1072 902 0.00 15.85 905 0.33

tai20 � 20 a 1155 1249 1155 0.00 7.52 1155 0.00
tai20 � 20 b 1241 1252 1242 0.08 0.80 1244 0.24
tai20 � 20 c 1257 1285 1257 0.00 2.17 1257 0.00
tai20 � 20 d 1248 1295 1248 0.00 3.62 1248 0.00
tai20 � 20 e 1256 1296 1256 0.00 3.08 1256 0.00
tai20 � 20 f 1204 1294 1204 0.00 6.95 1204 0.00
tai20 � 20 g 1294 1511 1294 0.00 14.36 1298 0.31
tai20 � 20 h 1169 1257 1173 0.34 6.68 1173 0.34
tai20 � 20 i 1289 1321 1289 0.00 2.42 1289 0.00
tai20 � 20 j 1241 1340 1241 0.00 7.39 1241 0.00

640 Naval Research Logistics, Vol. 52 (2005)



single-pass solution. We also report the DS/LTRPAM Non-
Greedy with Job Slack results and gaps. The optimal solutions
appear in bold. As is seen in Table 1, 17 out of 20 problems
were solved to optimality. Of the remaining three problems,

the solution gap from the lower bound varies between 0.08%
and 0.34%, an insignificant amount. The average solution gap
for all 20 problems is only 0.032%. The computing time is
relatively small. Average computing times and average num-

Table 3a. Results for randomly generated problem instances of sizes 25 � 25 and 30 � 30.

Problem
instance

Lower
bound

Single pass
best AugNN best

Solution gap
AugNN best

(%)
Improvement from

single pass (%)
AugNN DS/LTRPAM

NG mach. slack

Solution gap with
AugNN

DS/LTRPAM
NG MS (%)

25 � 25 a 1426 1644 1427 0.07 13.20 1427 0.07
25 � 25 b 1599 1720 1599 0.00 7.03 1599 0.00
25 � 25 c 1559 1662 1559 0.00 6.19 1559 0.00
25 � 25 d 1571 1690 1571 0.00 7.04 1571 0.00
25 � 25 e 1568 1660 1568 0.00 5.54 1568 0.00
25 � 25 f 1485 1632 1485 0.00 9.01 1485 0.00
25 � 25 g 1604 1717 1604 0.00 6.58 1604 0.00
25 � 25 h 1442 1563 1442 0.00 7.74 1442 0.00
25 � 25 i 1585 1739 1585 0.00 8.85 1585 0.00
25 � 25 j 1531 1640 1531 0.00 6.64 1531 0.00

30 � 30 a 1745 1891 1745 0.00 7.72 1745 0.00
30 � 30 b 1875 1994 1875 0.00 5.97 1875 0.00
30 � 30 c 1843 2024 1843 0.00 8.94 1843 0.00
30 � 30 d 1851 1977 1851 0.00 6.37 1851 0.00
30 � 30 e 1885 1998 1885 0.00 5.65 1885 0.00
30 � 30 f 1751 1853 1751 0.00 5.51 1751 0.00
30 � 30 g 1908 2075 1980 0.00 8.05 1909 0.05
30 � 30 h 1741 1893 1742 0.06 7.98 1746 0.29
30 � 30 i 1919 1980 1919 0.00 3.08 1919 0.00
30 � 30 j 1824 1917 1824 0.00 4.85 1824 0.00

Table 3b. Results for randomly generated problem instances of sizes 50 � 50 and 100 � 100.

Problem
instance

Lower
bound

Single pass
best

AugNN
beste

Solution gap
AugNN best

(%)
Improvement from

single pass (%)
AugNN DS/LTRPAM

NG mach. slack

Solution gap with
AugNN

DS/LTRPAM
NG MS (%)

50 � 50 a 3029 3157 3029 0.00 4.05 3029 0.00
50 � 50 b 3039 3181 3039 0.00 4.46 3039 0.00
50 � 50 c 3128 3280 3129 0.03 4.60 3129 0.03
50 � 50 d 3038 3209 3038 0.00 5.33 3038 0.00
50 � 50 e 2964 3105 2966 0.07 4.47 2966 0.07
50 � 50 f 2933 3100 2936 0.10 5.29 2937 0.14
50 � 50 g 3011 3160 3011 0.00 4.71 3011 0.00
50 � 50 h 3140 3286 3140 0.00 4.44 3140 0.00
50 � 50 i 3032 3087 3032 0.00 1.78 3033 0.03
50 � 50 j 2964 3097 2964 0.00 4.29 2968 0.14

100 � 100 a 5759 5875 5762 0.05 1.92 5765 0.10
100 � 100 b 5787 5953 5787 0.00 2.79 5787 0.00
100 � 100 c 5643 5958 5647 0.07 5.22 5647 0.07
100 � 100 d 5697 5866 5697 0.00 2.88 5701 0.07
100 � 100 e 6023 6248 6023 0.00 3.60 6023 0.00
100 � 100 f 5784 5951 5789 0.09 2.72 5791 0.12
100 � 100 g 5667 5875 5669 0.04 3.51 5673 0.10
100 � 100 h 5765 5945 5765 0.00 3.03 5768 0.05
100 � 100 i 5630 5712 5635 0.09 1.35 5636 0.11
100 � 100 j 5701 5870 5703 0.04 2.84 5709 0.14

641Colak and Agarwal: Augmented-Neural-Networks Approach



ber of iterations are given in Table 4. The AugNN DS/LTR-
PAM Non-Greedy Job Slack heuristic performs the best for
Taillard’s instances, although almost all of the heuristics find
optimal or near optimal solutions. The improvement due to the
iterative approach of AugNN over the first pass solution ranged
from 4.07% to 15.85% for the 15 � 15 problems and 0.80% to
14.36% for the 20 � 20 problems and averaged 8.64% for
15 � 15 and 5.50% for 20 � 20.

Table 2 gives the AugNN results for the ten Gueret and
Prins hard instances of size 10 � 10. We report the best
results from all 10 heuristics and also for the DS/LTRPAM
Non-Greedy Job Slack heuristic. The improvement due to
AugNN over single-pass heuristics ranged from 9.26% to
19.05% with an average improvement of 14.39%. The gaps
from the lower bound ranged from 0.84% to 6.10%.

The results for the third set of problems are given in
Tables 3a and 3b. The lower bound solution is found in
9 out of 10 instances for each of 25 � 25 and 30 � 30

problems. For the remaining two instances the solution
gap is only 0.07% and 0.06% and the average solution
gap is 0.0065%. The improvement due to the iterative
approach of AugNN over the first pass solution ranged
from 5.54% to 13.20% for the 25 � 25 problems and
3.08% to 8.94% for the 30 � 30 problems and average
was 7.78% for 25 � 25, 6.41% for 30 � 30. For these
problems DS/LTRPAM Non-Greedy Machine Slack heu-
ristic gave the best results.

For the 50 � 50 problems, lower-bound solutions were
obtained for 7 out of 10 instances, 5 of which were by our
new heuristic DS/LTRPAM Non-Greedy Machine Slack.
The remaining 3 out of 10 problems were solved within
0.03–0.1% of the lower bound. The improvement due to
AugNN’s iterative approach over the single-pass heuristic
was 1.78% to 5.33% with an average of 4.34%. For the
100 � 100 problems, 4 out of 10 problems were solved to
lower bound. The remaining 6 problems were solved within
0.04–0.09% of the lower bound. The improvement due to
AugNN over single-pass heuristic ranged from 1.35% to
5.22% with an average of 2.98%. The average solution gap
for all 50 � 50 and 100 � 100 problems was 0.029%. For
these problems also, DS/LTRPAM Non-Greedy Machine
Slack heuristic gave the best results.

Table 4 summarizes the computational times for the
various sets of problems. It also provides the average num-
ber of iterations taken for the best solution.

Table 5 shows comparative results of other meta-heuris-
tics that have been attempted on Taillard’s benchmark prob-
lems of size 15 � 15 and 20 � 20. The solutions that have

Table 4. Computational times (in seconds) and iterations.

Problem
instance set

Average computing
time for best

solution

Average number of
iterations for best

solution

tai15 � 15 17.3 118
tai20 � 20 28.6 143

GP10 � 10 36.5 214
25 � 25 56.2 121
30 � 30 76.8 167
50 � 50 861 227

100 � 100 2847 116

Table 5. Comparison of results of AugNN with other techniques (Taillard’s instances).

Problem instance Lower bound AugNN Dorndorf B&B Taillard TS Liaw GA Liaw SA Liaw TS Prins GA Blum ANT

tai15 � 15 a 937 937 937 937 937 937 937 937 937
tai15 � 15 b 918 918 NRa 918 918 920 920 918 918
tai15 � 15 c 871 871 871 871 871 871 871 871 871
tai15 � 15 d 934 934 934 934 934 934 934 934 934
tai15 � 15 e 946 946 946 950 946 946 949 946 946
tai15 � 15 f 933 933 933 933 933 933 933 933 933
tai15 � 15 g 891 891 891 891 891 891 891 891 891
tai15 � 15 h 893 893 893 893 893 893 893 893 893
tai15 � 15 i 899 901 899 908 899 905 910 899 902
tai15 � 15 j 902 902 902 902 902 902 906 902 902

tai20 � 20 a 1155 1155 1155 1155 1155 1155 1155 1155 1155
tai20 � 20 b 1241 1242 NR 1244 1242 1253 1246 1241 1247
tai20 � 20 c 1257 1257 1257 1257 1257 1257 1257 1257 1257
tai20 � 20 d 1248 1248 NR 1248 1248 1248 1248 1248 1248
tai20 � 20 e 1256 1256 1256 1256 1256 1256 1256 1256 1256
tai20 � 20 f 1204 1204 1204 1209 1204 1204 1204 1204 1204
tai20 � 20 g 1294 1294 1294 1294 1294 1294 1298 1294 1296
tai20 � 20 h 1169 1173 NR 1173 1177 1189 1184 1171 1177
tai20 � 20 i 1289 1289 1289 1289 1289 1289 1289 1289 1289
tai20 � 20 j 1241 1241 1241 1241 1241 1241 1241 1241 1241
aNR: Not reported.

642 Naval Research Logistics, Vol. 52 (2005)



not been solved to the lower bound are shaded. Our results
(shown in the third column) appear to be quite competitive
with the results of other techniques, although they do are not
the best.

Table 6 shows the comparative results for Gueret and
Prins instances with other techniques found in the literature.
Again, AugNN results appear to be very competitive with
other techniques, although it is not the best. Blum’s [5]
Beam-Ant approach appears to be the best. However, it may
be noted that Blum gave the best results from 20 runs and
each run has a time limit of 1000 seconds for GP instances.
Our average CPU time for the GP instances was 36.5
seconds.

Table 7 shows the CPU times for AugNN and other
meta-heuristics for the Taillard’s problems. Due to the dif-
ferences in processor speeds, a direct comparison, of course,
is difficult.

6. SUMMARY AND CONCLUSIONS

In this study, we have proposed and developed a for-
mulation for applying the augmented-neural-networks
(AugNN) approach for solving the classical open-shop
scheduling problem (OSSP) and have tested the formu-
lation on several benchmark problems from the literature
and also on some new, larger problems. The computa-
tional tests show excellent results on all the problems,

making this new AugNN approach a strong contender to
techniques such as tabu search simulated annealing, ant-
colonies, and genetic algorithms, for solving the OSSP
and other types of scheduling problems. The approach,
which combines the benefits of single-pass heuristics
approach and the iterative learning approach, is able to
give very good results in a short time, making it the
technique of choice especially for tackling large in-
stances. During the course of this study, we also devel-
oped a new single-pass heuristic (DS/LTRPAM). Non-
greedy versions of these heuristics were also developed.
The non-greedy DS/LTRPAM in conjunction with
AugNN gave better results than other heuristics. We also
formalized some new learning strategies such as rein-
forcement and backtracking to improve the learning pro-
cess and the solution quality. Large problem instances of
sizes 25 � 25, 30 � 30, 50 � 50, and 100 � 100 were
also generated.

Since the AugNN approach is still in its nascent state of
development, more work needs to be done. Better learning
strategies can be developed in future studies. Also, the
approach can be attempted on other variations of the OSSP
in which the objective is other than minimization of the
makespan. Since larger problems can now be solved in
reasonable time, industry should make use of this approach
for solving the OSSP.

Table 6. Comparison of results of AugNN with other techniques (Gueret and Prins instances).

Problem
instance

Lower
bound AugNN

Brucker et al.
B&B [7]

Prins GA
[22]

Blum ANT
[4]

Longest processing
time [22]

BBox
[14]

Blum beam
ANT [5]

gp10-01 1059 1113 1151 1113 1108 1151 1145 1099
gp10-02 1065 1117 1178 1120 1102 1477 1144 1101
gp10-03 1046 1104 1162 1101 1097 1512 1160 1082
gp10-04 1045 1098 1165 1090 1089 1244 1142 1093
gp10-05 1044 1095 1125 1094 1091 1356 1125 1083
gp10-06 1055 1074 1173 1074 1072 1448 1144 1088
gp10-07 1075 1084 1172 1083 1081 1487 1138 1084
gp10-08 1047 1104 1181 1098 1099 1313 1131 1099
gp10-09 1065 1130 1184 1121 1124 1403 1148 1121
gp10-10 1057 1099 1172 1095 1092 1237 1169 1097

Table 7. Comparison of average CPU time in seconds for Taillard’s 15 � 15 and 20 � 20 problem sets.

AugNNa Dorndorf B&Bb Taillard TS Liaw GAc Liaw SAd Liaw TSe Prins GA Blum ANTf

tai15 � 15 17.3 600 NR 138 372 150 NR 137
tai20 � 20 28.6 3600 NR 465 1632 218 NR 349
aUsed Celeron 900 MHz machine.
bUsed Pentium-II 333 MHz machine.
cUsed Pentium-II 266 MHz machine.
dUsed Pentium-II machine.
eUsed Pentium 133 MHz machine.
fUsed AMD Athlon 1100 MHz machine.
NR: Not reported.

643Colak and Agarwal: Augmented-Neural-Networks Approach



REFERENCES

[1] A. Agarwal, V.S. Jacob, H. Pirkul, Augmented neural net-
works for task scheduling, European J Oper Res 151(3)
(2003), 481–502.

[2] A. Agarwal, V.S. Jacob, and H. Pirkul, Improved augmented
neural networks for scheduling problems, INFORMS J Com-
put, forthcoming.

[3] D. Alcaide, J. Sicilia, and D. Vigo, Heuristic approaches for
the minimum makespan open shop problem, Trab Invest
Oper 5(2) (1997), 283–296.

[4] C. Blum, An ant-colony optimization algorithm to tackle
shop scheduling problems, Technical report, TR/IRDIA/
2003-01, IRDIA, Université Libre de Bruxelles, Belgium,
2003.

[5] C. Blum, Beam-ACO-hybridizing ant colony optimization
with beam search: An application to open shop scheduling,
Comput Oper Res 32 (2005), 1565–1591.

[6] H. Brasel, T. Tautenhahn, and F. Werner, Constructive heu-
ristic algorithms for the open shop problem, Computing 51
(1993), 95–110.

[7] P. Brucker, J. Hurink, B. Jurish, and B. Wostmann, A branch
and bound algorithm for the open-shop problem, Discrete
Appl Math 76 (1997), 43–59.

[8] U. Dorndorf, E. Pesch, and T. Phan-Huy, Solving the open
shop scheduling problem, J Sched 4 (2001), 157–174.

[9] Y.P.S. Foo and Y. Takefuji, Stochastic neural networks for
solving job-shop scheduling, Proc Joint Int Conf Neural
Networks 2 (1988), 275–290.

[10] T. Gonzalez and S. Sahni, Open shop scheduling to minimize
finish time, ACM 23(4) (1976), 665–679.

[11] C. Gueret, N. Jussien, and C. Prins, Using intelligent back-
tracking to improve branch-and-bound methods: An applica-
tion to open shop problems, European J Oper Res 127 (2000),
344–354.

[12] C. Gueret and C. Prins, A new Lower Bound for the open-
shop problem, Ann Oper Res 92 (1998), 165–183.

[13] C. Gueret and C. Prins, Classical and new heuristics for the
open shop problem: A computational evaluation, European J
Oper Res 107 (1998), 306–314.

14. C. Gueret and C. Prins, Efficient heuristic black boxes for the
open-shop: Comparison with other methods on three bench-
marks. Research Report 98/11/AUTO, École des Mines de
Nantes, France, 1998.

[15] J.J. Hopfield and D.W. Tank, Neural computation of deci-
sions in optimization problems, Biol Cybernet 52 (1985),
141–152.

[16] S. Khuri and S. Miryala, Genetic algorithms for solving open
shop scheduling problems, Progress in artificial intelligence,
Lecture Notes in Artificial Intelligence, Springer, Berlin,
1999, pp. 357–369.

[17] C.F. Liaw, An iterative improvement approach for the non-
preemptive open shop scheduling problem, European J Oper
Res 111 (1998), 509–517.

[18] C.F. Liaw, A tabu search algorithm for the open shop sched-
uling problem, Comput Oper Res 26 (1999), 109–126.

[19] C.F. Liaw, Applying simulated annealing to the open shop
scheduling problem, IIE Trans 31 (1999), 457–465.

[20] C.F. Liaw, A hybrid genetic algorithm for the open shop
scheduling problem, European J Oper Res 124 (2000), 28–
42.

[21] M. Pinedo, Scheduling: Theory, algorithms, and systems,
Prentice Hall, Upper Saddle River, NJ, 1995.

[22] C. Prins, Competitive genetic algorithms for the open shop
scheduling problem, Math Methods Oper Res 52 (2000),
389–411.

[23] I. Sabuncuoglu and B. Gurgun, A neural network model for
scheduling problems, European J Oper Res 93 (1996), 288–
299.

[24] E. Taillard, Benchmarks for basic scheduling problems, Eu-
ropean J Oper Res 64 (1993), 278–285.

644 Naval Research Logistics, Vol. 52 (2005)


