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Abstract

We propose a new approach, called Augmented Neural Networks (AugNN) for solving the task-scheduling prob-

lem. This approach is a hybrid of the heuristic and the neural networks approaches. While retaining all the advantages

of the heuristic approach, AugNN incorporates learning, to find improved solutions iteratively. This new framework

maps the problem structure to a neural network and utilizes domain specific knowledge for finding solutions. The

problem we address is that of minimizing the makespan in scheduling n tasks on m machines where the tasks follow a

precedence relation and task pre-emption is not allowed. Solutions obtained from AugNN using various learning rules

are compared with six different commonly used heuristics. AugNN approach provides significant improvements over

heuristic results. In just a few iterations, the gap between the lower bound and the obtained solution is reduced by as

much as 58% for some heuristics, without any increase in computational complexity. While the heuristics found so-

lutions in the range of 5.8–26.9% of the lower bound, on average, AugNN found solutions in the range of 3.3–11.1%, a

significant improvement.

� 2002 Elsevier B.V. All rights reserved.
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1. Introduction

Neural networks (NNs) have been applied extensively to a variety of problems in various disciplines such
as data mining, pattern recognition and classification (Bishop, 1995). They have also been used for solving

certain optimization problems. For example Hopfield and Tank (1985) used NNs for solving the TSP. Foo

and Takefuji (1988a,b,c), Sabuncuoglu and Gurgun (1996), and Satake et al. (1994) have used the Hopfield

and Tank approach for solving the job-shop scheduling problem. Other iterative search techniques such as

Simulated Annealing (Steinhofel et al., 1999), Tabu Search (Pezzella and Merelli, 2000; Thomas and Salhi,

1998) and Genetic Algorithms (Candido et al., 1998; Miller et al., 1999; Sakawa and Kubota, 2000) have

also been used for various scheduling problems. However, these approaches fail to provide good solutions
* Corresponding author. Tel.: +1-35-239-27300; fax: +1-35-239-25438.

E-mail addresses: aagarwal@ufl.edu (A. Agarwal), hpirkul@utdallas.edu (H. Pirkul), vjacob@utdallas.edu (V.S. Jacob).

0377-2217/$ - see front matter � 2002 Elsevier B.V. All rights reserved.

doi:10.1016/S0377-2217(02)00605-7

mail to: aagarwal@ufl.edu


482 A. Agarwal et al. / European Journal of Operational Research 151 (2003) 481–502
as the problem size grows and require thousands of iterations. The CPU times, as a result, tend to be high,

in the order of 100’s of seconds per problem for small problems of about 10 tasks and 1000�s of seconds for
problems of about 100 tasks (Sabuncuoglu and Gurgun, 1996).

In this paper, we propose an alternative to the Hopfield and Tank approach of using neural networks for

the scheduling problem, in which the behavior of the solution procedure does not deteriorate as the

problem size grows. This approach, which we call the Augmented Neural Network (AugNN) approach, is a
hybrid of the heuristic and the neural network approaches. The approach maps the problem structure on

the network and utilizes domain specific knowledge to improve performance. In less than 100 iterations,

excellent results are obtained. To demonstrate this new framework we apply it to the task-scheduling

problem. The approach, however, can be used for other more complex scheduling problems such as the

open shop and the job-shop scheduling problems.

The scheduling problem has been stimulated by the increasingly competitive world markets for efficiently

manufactured goods, as well as for efficiency in distributed computing environments. Lo and Bavarian

(1993) argue that there is a great need for better scheduling algorithms and heuristics. The task-scheduling
problem occurs in a variety of situations, ranging from project management to scheduling of tasks in a

multiprocessor environment. In fact, the task-scheduling problem is at the heart of many scheduling

problems, both in manufacturing and computing. Improvements in the task-scheduling problem will easily

translate to other types of scheduling problems.

The problem we address is that of minimizing the makespan in scheduling n tasks on a set of m identical

machines. The tasks follow precedence constraints and cannot be pre-empted. This problem has been

studied extensively by a number of researchers (Hu, 1961; Coffman, 1976; Graham et al., 1979; Kasahara

and Narita, 1985). Since the problem is NP-Hard, solution procedures require excessive computational
effort for larger problem instances. Therefore, the problem is generally solved using heuristics, such as

Highest Level First (HLF), Highest Level with Estimated Time First (HLETF), Critical Path/Most Imme-

diate Successor First (CP/MISF), etc. No single heuristic works best for all problems. On average, HLETF

and CP/MISF (see Kasahara and Narita, 1985) are known to work the best. Our experience during this

research was that HLETF worked the best, followed by HLF. Neural network approaches based on

Hopfield networks have been applied to the job-shop scheduling problems but not for the task-scheduling

problem. With little modification, our approach can handle the job shop problem as well.

The proposed AugNN approach makes use of the characteristics of NNs, yet is different from the prior
neural network approaches used for solving optimization problems. A critical feature of our approach is

the one-to-one correspondence between the problem structure and the NN structure, thus, allowing the NN

to be augmented by the relevant domain specific knowledge in solving the problem. We use six different

heuristics and two different learning rules to test the effectiveness and robustness of the AugNN approach.

For each of the six heuristics, significant improvements were obtained using AugNN. In some cases, the gap

between the lower bound solution and the heuristic solution was reduced by as much as 58%. Also, while

the heuristics found solutions in the range of within 5.8–26.9% of the lower bound, on average, AugNN

found solutions in the range of 3.3–11.1%, a significant improvement.
This research, therefore, makes a twofold contribution. First, it presents a new approach for solving the

task-scheduling problem. Second, it presents a new way of using neural networks, one that allows em-

bedding of relevant domain specific knowledge and makes use of the network structure to represent the

problem itself. This framework can be applied to other optimization problems especially those that lend

themselves to network structures.

The rest of the paper is organized as follows. In Section 2, the literature review for the task-scheduling

problem is provided. Existing neural network approaches are also discussed. Section 3 describes the task-

scheduling problem in order to better understand the proposed framework. Section 4 describes the pro-
posed framework in detail. Section 5 includes the computational experience and a discussion of the results.

Section 6 provides the summary and conclusions.



A. Agarwal et al. / European Journal of Operational Research 151 (2003) 481–502 483
2. Literature review

Sabuncuoglu (1998) provides an excellent review of literature in the use of neural networks in

Scheduling. They point out the limitations of the current approaches based on backpropagation neural

networks for optimization problems and encourage research on alternative approaches. Hu (1961) had
pioneered the idea of a heuristic approach for solving scheduling problems for the identical machine case

with precedence constraints. He developed ‘‘Level-Scheduling’’, a critical path approach for greedy heu-

ristics. Most of the heuristic scheduling procedures described in the literature are based on ‘‘priority dis-

patching’’ rules (Adams et al., 1988). Panwalker and Iskander (1977) provide a survey of dispatching rules.

For a more recent comparison study of dispatching rules for job shop scheduling, see Rajendran and

Holthaus (1999).

Adams et al. (1988) were amongst the first to propose an iterative (or multi-pass) procedure for solving

scheduling problems. They proposed a shifting bottleneck procedure for the job shop problem. They ap-
plied their shifting bottleneck heuristic to 59 problems with size ranging from 20 operations (5 jobs, 4

machines) to 500 operations (50 jobs, 10 machines). Uzsoy and Wang (2000) extend the study of shifting

bottleneck procedure.

Hopfield and Tank (1985) pioneered the application of neural networks for solving combinatorial

optimization problems. They solved the traveling salesman problem by defining an �Energy Function�,
which captured the constraints of the problem. A neural network was used to minimize the value of this

�Energy Function�, thus giving the solution. The Hopfield network has been applied to the job-shop

scheduling problem by several researchers. Foo and Takefuji (1988a,b,c) were amongst the first. They,
however, use a very small 2-job, 3-machine problem. The computational complexity is Oðm2n2 þ mnÞ. Lo
and Bavarian (1993) use an extension of the Hopfield network to solve the scheduling problem with

deadline requirements. They also considered a small problem with 10 tasks and 3 machines. Their

computational complexity was Oðnmk þ aÞ2, where k is the processing time. The number of iterations

required for convergence was as high as 3000. Satake et al. (1994) have used a modified Hopfield network

to solve bigger problems, up to 14-job, 7-machines. They change the threshold values at each transition

of neurons in order to make a non-delay schedule in addition to incorporating job and shop-related

constraints. The computation time remains poor at about 700 s for a relatively small, 14-job, 7-machine
problem. Lo and Hsu (1993) propose a modified Hopfield network to improve computational time. Still,

a 35-job 4-machine problem took an average of 150 seconds. Computational complexity is not reported.

Sabuncuoglu and Gurgun (1996) have reported yet another variation of the Hopfield network. Com-

putational times have not improved. For example, a 15-job 5-machine problem took about 2300 s to

reach a near optimum solution.

The energy function approach therefore, has the following problems. They do not work well on large

problems. Most reported results are for extremely small problem sizes. The problem formulation itself is

still an art. The computational complexity and thereby CPU times remain high. For a complete review of
the application of neural networks in manufacturing, see Zhang and Huang (1995). For a review of ma-

chine learning in scheduling, see Haldun et al. (1994) and Sabuncuoglu (1998). Biskup (1999) and Chen et al.

(1999) have suggested learning based scheduling. Machine learning techniques other than neural networks

have also been used for some scheduling problems. For example Steinhofel et al. (1999) use simulated

annealing for the job shop problem and Pezzella and Merelli (2000) and Thomas and Salhi (1998) use Tabu

Search in conjunction with the shifting bottleneck procedure for certain job shop problems. Solution times

remain in thousands of seconds per problem even on fast machines. The number of iterations needed for

solutions remains very high at about 10,000.
The following section describes the problem and briefly discusses the six heuristics used in

our paper. Discussion of heuristics will help understand the proposed neural network framework

better.
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3. The problem

In this paper, we address the problem of scheduling n tasks on m identical machines (or processors). The

task graph is directed acyclic, which means there are precedence constraints. Pre-emption of tasks is not

allowed. There are an arbitrary number of machines. The objective is to minimize the makespan. Addi-
tional constraints are that the same machine may not be assigned to more than one task at the same time

and that the same task is not assigned to more than one machine at a time. An instance of a scheduling

problem with identical machines is described below (see Fig. 1). There are seven tasks and two machines.

This example will be used to explain the proposed AugNN framework in Section 4.

This research uses six different heuristics to test if the hybrid approach makes a difference. They are: (i)

Highest Level First (HLF), (ii) Highest Level with Estimated Time First (HLETF), (iii) Critical Path with

Most Immediate Successors First (CP/MISF), (iv) Shortest Path Time (SPT), (v) Longest Processing Time

(LPT), and (vi) Random.
In the HLF dispatching rule, task with the highest Level is given preference. Ties, if any, are broken at

random. Level of a task is the number of tasks in the longest remaining path up to the final task, including

the task in question. So, for example, the Level of the final task is 1 and of the task preceding it is 2 and so

on. Although a simple heuristic, HLF gives surprisingly good results. The idea is that tasks with higher

levels are more likely to be on the critical path. The HLETF dispatching rule is a minor variation of the

HLF rule. �Level with estimated time�, hereafter LET, is the estimated processing time of the longest re-

maining path, including the task in question. Ties are rare under HLETF rule, but if they arise they are

broken at random. In our experience, the HLETF heuristic provides better results than HLF.
The CP/MISF dispatching rule, as the name suggests, gives priority to tasks on the critical path. In case

of ties, priority is given to the task with the most number of immediate successors. In our experience, CP/

MISF did not provide as good results as HLF and HLETF, although it performed better than the other

three heuristics. The SPT rule is the opposite of HLETF. SPT gives priority to the task with the shortest
T5

Fig. 1. An example task graph used to illustrate the AugNN approach (this is a 7-task, 2-machine problem).
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remaining path. This rule did not provide good results. In the LPT rule, priority is given to the task with the

longest processing time, regardless of the time of the remaining path. This rule worked better than SPT,

although not as good as some of the other heuristics. Finally, the RANDOM dispatching rule, assigns

priority at random. Surprisingly, this approach often gave better results than some of the other heuristics,

in particular SPT and LPT. It is not the purpose of this research to compare these heuristics but to see

if AugNN can improve upon each of these heuristics, by using adaptive learning.
4. The augmented neural network framework

The AugNN framework first translates the given scheduling problem to a NN architecture. We present

here a very brief description of NNs so the reader is familiar with certain terms we use in discussing the

AugNN framework. For a detailed discussion of NNs, see Rumelhart and McClelland (1989). A typical

NN consists of a network of interconnected processing elements (PEs) or neurons, arranged in layers
(input, hidden and output layers). PEs are connected from one layer to the next through links. These links

are characterized by weights. With the help of input, activation (or transfer) and output functions on the

PEs and weights on the links between PEs, a given input is transformed to an output. Better outputs are

obtained in subsequent iterations by intelligently modifying the weights (using a learning rule) on the links.

We build a NN for the given task-scheduling problem, with weights on links between PEs and with

input, activation and output functions on the PEs such that the output of the final PE gives the makespan

of a feasible solution. We then use this adaptive machine-learning paradigm to find improved solutions in

subsequent iterations by modifying the weights using an intelligent learning strategy. The input, activation
and output functions can be designed to implement a given heuristic and to enforce the constraints of the

problem. Various learning strategies can be devised. This approach thus offers the flexibility of using any

established heuristic with any learning strategy.

The power of this approach comes from the combined use of heuristic and learning approach. The

heuristic gives a good starting point. The approach therefore cannot do worse than the single-pass heuristic.

The improvement in subsequent iterations comes from the learning involved. If a particular task when

given priority over others, results in a better makespan, it is rewarded with higher priority weight and vice

versa if it results in a worse makespan, it is penalized. Simulated Annealing and Tabu Search could also give
good results, but by their nature, require excessive number of iterations.

We now describe how a given scheduling problem is translated into a NN architecture, using the example

problem of Fig. 1. Next we will describe the general procedure, followed by the mathematical formulation.

4.1. AugNN applied to a special case

The proposed neural network framework is explained with the help of Fig. 2, using the example problem

of Fig. 1. There are seven tasks and two machines in the problem. A network of task nodes (T) and machine
nodes (M) is constructed as in Fig. 2. Node I acts as the initial node and F as the final node. Note that the

task nodes in Fig. 2 follow the same precedence relationship as the tasks in Fig. 1. For each task node there

are two machine nodes. In naming a machine node, the first subscript identifies the machine while the

second identifies the task linked with it. Each task or machine node is viewed as a PE of a NN, each with its

own input function, activation function and output function. The nodes are connected by links with weights

associated with them. These weights help determine the assignment of tasks to machines. Within the same

layer, tasks compete for assignment.

The input function, the activation function and the output functions are designed such that the network
preserves the precedence order of the tasks. These functions also make sure that the same task is not as-

signed to more than one machine at the same time and that the same machine is not assigned to more than
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Fig. 2. Neural network architecture for the AugNN approach for the example problem of Fig. 1.
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one task at the same time. These functions are described in detail in Appendix A. As can be seen, this

network has all the elements of a typical NN, yet it is slightly different in that the network is not fully

connected and there are many ‘‘hidden’’ layers. The connections are based on precedence of tasks and the

number of hidden layers depends on the given problem. Also, PEs are linked to other PEs within the same

layer, with those in the next layer, as well with those in the previous layer.

Note the presence of two sets of links (shown dotted in Fig. 2) between machine nodes. One set of
dotted links is between two machines for the same task while the other is between the same machines on

different tasks within the same layer. These links are used to send inhibitory signals to other nodes to

enforce certain constraints. For example, the first set of links is used to ensure that the same task is not

assigned to more than one machine while the second set of links is used to ensure that the same machine
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does not get assigned to more than one task at the same time. For instance suppose task 2 is assigned to

machine 1 and tasks 3 and 4 are not yet assigned, then node M12 will send an inhibitory signal to node

M22 to ensure that task 2 does not also get assigned to machine 2 and also to nodes M13 and M14 to

ensure that tasks 3 or 4 are not assigned to machine 1. Once task 2 is completed on machine 1, node M12

will send another signal withdrawing the inhibitory signal from M13 and M14, thus allowing tasks 3 and 4

to be assigned to machine 1. In addition to the dotted links between machine nodes, there is a set of
dotted links from the machine nodes back to the task node. This link sends a signal to the task indicating

that it is currently being processed.

One pass (or iteration) from node I through node F generates a feasible solution. After each iteration, the

weights are modified using a learning strategy. The change in weights is a function of error (gap between

lower bound and the obtained solution), the learning rate and some parameter such as task processing time

or Level of the task. The solution is arrived at after several iterations. The stopping rule is––either a lower

bound solution is reached or that the solution remains unchanged for certain number of consecutive it-

erations.

4.2. The general AugNN architecture

The general procedure to construct the AugNN architecture from a given task-scheduling problem is

now explained. The task nodes of the task graph become the task node of the AugNN structure. An initial

node �I � and a final node �F � are added at the respective ends. I is the only PE in the input layer while F is the

only PE in the output layer. The remaining tasks are represented with PEs in hidden layers. For each task

node, as many machine nodes are added as there are machines in the problem. The machine nodes are then
linked to all successor task nodes (according to the precedence constraints of the problem). These links help

enforce the precedence constraint. Machine nodes for the same task are connected with a dotted link for

inhibitory signal, to enforce the constraint that a task is not assigned to two machines. Same machine nodes

on different tasks on the same layer are connected with dotted links for inhibitory signals to ensure that two

tasks are not assigned to the same machine at the same time. Machine nodes are also linked to the task

nodes in the reverse direction to indicate if a task is currently in process with a particular machine. Pro-

grammatically, these links are identified by matrices of connections between nodes. These matrices are

discussed under Appendix A. The input is in the form of two matrices, an n� n precedence matrix and an
n� m processing times matrix.

Flowcharts in Figs. 3 and 4 explain the general underlying AugNN solution procedure. As noted in Fig.

3, after reading the processing time and precedence matrix, we perform some preliminary steps such as

finding the lower bound of the problem, initializing the weights and calculating the thresholds of tasks. A

single iteration is then carried out using the input, activation and output functions of the task and machine

nodes. See Fig. 4 for details. The mathematical treatment of the aforementioned functions is included in

Appendix A.

At the end of an iteration, we decide whether to stop or continue with the next iteration. If the obtained
solution is a lower bound solution then we know that the solution is optimal and we can stop. If not, then if

we have performed a predetermined number of maximum iterations then we can stop. Or if the solution has

not changed in the past ten iterations, we can stop. Otherwise we modify our weights using a learning

strategy and start a fresh iteration.
5. Results and computational experience

The six heuristics discussed earlier and the AugNN approach were implemented in Visual Basic 6.0�

environment, running on IBM compatible Pentium III 450 machine with 128 MB RAM.



Fig. 3. Flowchart explaining the AugNN solution procedure.
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5.1. Problems

Five hundred and seventy problems of various task/machine sizes were generated with random pro-

cessing times (using uniform distribution) and random precedence matrices the same way such problems

have been generated in previous studies such as Kasahara and Narita (1985). The number of tasks ranged

from 10 to 100 and the number of machines from 2 to 5. For smaller number of tasks, fewer machines were

used, and as the number of tasks increased, so did the number of machines. For each problem size, 30
instances of problems were generated. Table 1 summarizes the distribution of problems by size.



Fig. 4. Iteration flowchart.
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5.2. Sensitivity analysis

The results obtained using AugNN depend upon various training parameters such as the learning rate

(a), the learning rule, initial weight, and the number of maximum iterations used in the stopping rule. In

order to ascertain the best values for these parameters we conducted a sensitivity analysis. We performed



Table 1

Number of problems for each size (# of tasks vs. # of machines) used for empirical work total of 570 problems are used

Number of tasks Number of machines

2 3 4 5

10 30

20 30 30

30 30 30

40 30 30

50 30 30

60 30 30

70 30 30

80 30 30

90 30 30

100 30 30

Total problems 90 120 210 150
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the sensitivity analysis on the HLETF since this dispatch rule gave the best results. We first determined how
many iterations were enough to find good solutions. So we ran all the 570 problems using various number-

of-maximum-iterations in the stopping rule. We tried up to 200 iterations. Table 2(a) and Fig. 5 summarize

the results.

We found that the most reduction in gap occurs in the first 10 iterations (28.3%). Thereafter, for each

increment of 10 iterations, up to 40 or so iterations, the improvement is several percent points. Beyond 50

iterations, the rate of improvement slows down considerably. While the first 100 iterations give an im-

provement in gap of 42.5%, the next 100 iterations only improve the gap by about 1.4%. Since the bulk of

the improvement occurred in the first 100 iterations, we ran our experiments with 100 iterations. However,
if the problem requires a more accurate solution, the max number of iterations can be improved to 200 or

higher.

We next performed the sensitivity analysis on the learning rate (or a). We tried a of 0.001, 0.005, 0.01,

0.05, 0.1, 0.5, 1.0 and 2.0. Table 2(b) and Fig. 6 show the results. We found that very small a (0.001) did not

perform that well. Beyond an a of 0.01, the results were not very sensitive to changes in a. The best

makespan was obtained for a of 0.1. So we used 0.1 as our a for the rest of the experiments.

Initial weights are another parameter, which may affect learning, although in theory it should not make

much difference. To see what level of initial weight to use, we performed the sensitivity analysis on this
parameter too. We tried initial weights of 1, 10, 50 and 100. The results are displayed in Table 2(c) and Fig.

7. There were not any significant differences. An initial weight of 10 performed the best, with no significant

differences for other initial weights.

5.3. Results with different heuristics

We then tested how well each of the six heuristics and the AugNN using these heuristics performed on our

problems. We used a learning rate of 0.1, initial weight of 10 and we ran 100 maximum iterations. Twelve
combinations of six heuristics and two learning rules were run on 570 problems. Results are reported in

Tables 3–7. Three criteria are used for the performance evaluation of AugNN. The first and the most im-

portant criterion is––Reduction (or improvement) in the makespan, which is equivalent to the reduction in

gap between the lower bound (LB) solution and the heuristic solution. Hereafter, the gap between obtained

solution and LB solution will simply be referred to as the �gap�. Reduction in gap can be expressed in absolute

terms as well as in percent terms (i.e. percent of gap obtained by the heuristic). Table 3 provides aggregate

results for all 570 problems for this criterion, for all heuristics/learning rule combinations.



Fig. 5. Sensitivity analysis for maximum iterations in the stopping rule.

Table 2

Sensitivity analysis for the parameter

Gap using AugNN with HLETF Improvement over single pass (%)

(a) Number of maximum iterations in the stopping rulea

5 4105 19.8

10 3672 28.3

20 3346 34.6

30 3181 37.9

40 3095 39.6

50 3044 40.5

60 3018 41.0

70 2996 41.5

80 2977 41.8

90 2962 42.2

100 2946 42.5

150 2908 43.2

200 2876 43.8

(b) Learning rateb

0.001 3210 37.3

0.005 3016 41.1

0.01 2990 41.6

0.05 2991 41.6

0.1 2946 42.5

0.5 3007 41.3

1.0 2998 41.5

2.0 2997 41.5

(c) Initial weight

1 3003 41.4

10 2946 42.5

50 2989 41.6

100 2977 41.9

aOther parameters used were learning rate: 0.1; initial weight: 10; min weight: 0.001.
bOther parameters used were max iterations: 100; initial weight: 10; min weight: 0.001.
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Fig. 6. Sensitivity analysis for the learning rate.

Fig. 7. Sensitivity analysis for the initial weight.
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The second criteria is––Number of cases with known optimum solutions, i.e. cases with LB solutions.

This can also be expressed in both absolute or percentage (of total problems) terms. Table 4 summarizes the

results for this criterion. While this criterion takes into account known optimum solutions, it ignores cases

where the AugNN approach improves upon the heuristic solution but does not necessarily reach a known

optimum solution. So we have a third criterion––Cases where improvement in makespan occurs over

heuristic. This can be expressed as a percentage of cases where improvement may (or may not) be possible.
If the heuristic finds a LB solution, then it is also an optimum solution and no improvement is possible. If

the heuristic finds a non-LB solution, it may or may not be an optimum solution. So an improvement may

not be possible (if the solution is optimum), or possible (if it is not optimum). Table 5 summarizes the

results for the third criterion.

For each of the 570 problems, AugNN solution is better than or equal to the heuristic solution. Consider

the first criteria, i.e., Reduction in gap. The gaps obtained from the various single pass heuristics range from

5.8% of LB (for HLETF) to as much as 26.9% of LB (for SPT) (see Table 3). The gaps obtained from

AugNN range from 3.3% (for HLETF) to 11.1% (for SPT). Ignoring the SPT heuristic, the worst gap given
by AugNN is only 6.9%. The reduction in gap by AugNN over the gap obtained by the heuristic, ranges

from 38.6% to as high as 58.7%. Considering that the heuristics considered in this paper are regarded as

�very good� in the scheduling literature, improvements of this order are quite impressive, especially because

they are obtained in just a few iterations. Although it is not the purpose of this paper to compare heuristics

with each other, it may be noted that the heuristic based on HLETF dispatching rule performs significantly



Table 3

Aggregate results for 570 problems for AugNN and six single pass heuristic algorithms, for different learning rules

Heuristic used Task para-

meter used in

learning rule

Makespan

with single

pass heuristic

Makespan

with AugNN

Gapa from

LBb with

heuristic

Gap from LB

with AugNN

Reduction in

makespan (or

gap) by

AugNNc

Percent re-

duction in gap

by AugNN

over heuristic

Gapa using

heuristic,

expressed as

percentage of

LB

Gapa using

AugNN, ex-

pressed as

percentage of

LB

HLF L 94473 91629 7283 4439 2844 39.0 8.3 5.0

LET 94473 91665 7283 4475 2808 38.6 8.3

HLETF LET 92311 90136 5121 2946 2175 42.5 5.8 3.3

CP/MISF CP 96003 92283 8813 5093 3720 42.2 10.1 5.8

LET 96003 92495 8813 5305 3508 39.8 10.1

SPT SPT 110649 96889 23459 9699 13760 58.7 26.9 11.1

LET 110649 96943 23459 9753 13706 58.4 26.9

LPT LPT 101435 93290 14245 6100 8145 57.2 16.3 6.9

LET 101435 93296 14245 6106 8139 57.1 16.3

Random Random 99816 92657 12626 5467 7159 56.7 14.5 6.2

LET 100066 92540 12876 5350 7526 58.4 12.7

aGap between obtained solution and the lower bound.
b The LB for these 570 problems is 87,190.
c The reduction refers to reduction by AugNN with respect to single pass heuristic. Reduction in makespan is equivalent to reduction in the gap between obtained

solution and LB.
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Table 4

Cases with known optimum solutiona for all 570 problems obtained using single pass heuristics and with AugNN

Heuristic used Task parameter used

in learning rule

With single pass

heuristic

Expressed as

percentage

With AugNN Expressed as

percentage

HLF L 11 1.93b 66 11.58

LET 11 1.93 58 10.17

HLETF LET 18 3.16 91 15.96

CP/MISF CP 13 2.28 63 11.05

LET 13 2.28 60 10.52

SPT SPT 1 0.17 21 3.68

LET 1 0.17 23 4.03

LPT LPT 10 1.75 50 8.77

LET 10 1.75 48 8.42

Random Random 7 1.22 73 12.88

LET 4 1.22 75 13.16

aA solution is known to be optimum if the solution equals the lower bound.
b 11 as a percentage of 570 is 1.93.

Table 5

Cases where improvement over heuristic solution occurs using AugNN

Heuristic

used

Task parameter used in

learning rule

Cases where improvement

may be possiblea
Cases where improvement

occurs

Percentage of cases improved

to total possible

HLF L 559b 527 94.2

LET 559 525 93.9

HLETF LET 552 518 93.8

CP/

MISF

CP 557 516 92.6

LET 557 521 93.5

SPT SPT 569 561 98.6

LET 569 562 98.7

LPT LPT 560 538 96.1

LET 560 531 94.8

Random Random 563 543 96.4

LET 563 549 97.5

aWe say ‘‘may be possible’’ because even though the single pass heuristic does not give a lower bound solution, it could give an

optimal solution, which cannot be improved upon.
b 559 is (570 minus 11), because 11 solutions were known to be optimal.
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better than others. In fact, the range of results of the six heuristics is very high (gaps of 5121–23,459).
AugNN on the other hand, provides results in a much narrower range (gaps of 2946–9753), hence AugNN

may be considered quite robust.

The second criterion looks at the number of cases for which a known optimum is achieved. While the

best heuristic gives a known optimum solution for 18 out of 570 problems (3.16%), AugNN gives a known

optimum for as many as 91 problems (or 16%) (see Table 4). For each heuristic, the improvement in the

number of known cases is significant. Results for third criterion are also very good. See Table 5 for a



Table 6

Number of iterations and CPU times

Heuristic used Task parameter

used in learning

rule

Number of iterations

using AugNN to find

the best solution

(average of all 570

problems)

Total iterations

needed by AugNN

(average of all 570

problems)

CPU time (in sec-

ond) using single

pass heuristic for all

570 problems

CPU time (in sec-

ond) using AugNN

for all 570 problems

HLF L 35.7 90 32a 833

LET 33.8 90 835

HLETF LET 27.1 86 34 818

CP/MISF CP 50.6 84 35 830

LET 34.6 91 880

SPT SPT 36.5 92 32 760

LET 34.4 96 747

LPT LPT 37.1 97 33 796

LET 36.3 93 790

Random Random 40.4 91 33 793

LET 40.9 91 838

a For single pass heuristic, the CPU time is independent of the learning rule.

Table 7

Results by problem size for HLF heuristic (panel A) and HLETF heuristic (panel B)

No. of tasks LB Makespan

with single

pass heuristic

Makespan with

AugNN (HLF)

Gap by

single pass

heuristic

Gap by

AugNN

Improve-

ment over

single pass

Percent

improve-

ment

Avg CPU

time per

problem

Panel A

10 1443 1571 1511 128 68 60 46.8 0.047

20 5032 5390 5133 358 101 257 71.8 0.309

30 7516 7939 7711 423 195 228 53.9 0.732

40 7442 8217 7945 775 503 272 35.1 1.328

50 9144 9916 9600 772 456 316 40.9 2.087

60 8523 9580 9259 1057 736 321 30.3 2.609

70 9954 10959 10629 1005 675 330 32.8 3.386

80 11469 12585 12228 1116 759 357 31.9 5.147

90 12670 13499 13180 829 510 319 38.5 6.242

100 13997 14817 14433 820 436 384 46.8 6.869

Makespan with

AugNN (HLETF)

Panel B

10 1443 1613 1503 170 60 110 64.7 0.046

20 5032 5339 5119 307 87 220 71.7 0.285

30 7516 7908 7665 392 149 243 61.9 0.596

40 7442 8047 7807 605 365 240 39.7 1.261

50 9144 9689 9457 545 313 232 42.6 2.126

60 8523 9181 8965 658 442 216 32.8 2.603

70 9954 10628 10380 674 426 248 36.8 3.361

80 11469 12244 12008 775 539 236 30.5 5.144

90 12670 13194 12985 524 315 209 39.9 6.265

100 13997 14468 14247 471 250 221 46.9 6.546
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summary of number of cases where a positive improvement occurs. AugNN provides an improvement over

the heuristic solution on a very high percentage of problems (92.6–98.7%).

We also show the results by problem size, for the various heuristics. These results are summarized in

Table 7a and b for HLF and HLETF dispatching rules. We find that problems with 20 tasks showed the

maximum improvement (71.8% and 71.7% for HLF and HLETF respectively). For all other size tasks we

did not observe any significant variance and the solution procedure seems to work equally well for all size
problems. Computational complexity and computational times are discussed in the following subsection.

5.4. Computational complexity

The computational complexity for our algorithm is Oðn2 þ mnÞ per iteration. This is also the compu-

tational complexity of each of the all heuristics considered in the study. The only difference is that AugNN

requires a few iterations whereas all the heuristics are single pass heuristics. On an average, AugNN gives

the best solution within 40 iterations for the random heuristic and less than 37 for most of other heuristics.
The total number of iterations tried on average ranged from 84 to 97. Table 6 summarizes the results of the

number of iterations taken. The computation time of course increased as the problem size increased. A 50-

task problem was solved in an average of 2 seconds, a 100 task problem on average took about 6.5 seconds.

The average CPU time taken per problem is in the range of 1.3–1.5 seconds. In comparison to these results,

the computational complexity of NN based on Hopfield and Tank paradigm is an order of magnitude

higher (worse) than our computational complexity. Lo and Bavarian (1993) show a complexity of OðnmkÞ2,
where k is the makespan. Also, the number of iterations required in the Hopfield and Tank paradigm

approach can range upto several thousands (upto three thousand in case of Lo and Bavarian) compared
to ours which averaged below 37 for most heuristics.
6. Summary and conclusions

In this paper we propose a neural network framework for solving the task-scheduling problem. The

problem considered is that of minimizing the makespan for scheduling n tasks on m identical machines,

where the tasks follow a predetermined precedence order and pre-emption of tasks is not permitted. This
problem belongs to the class of NP-Hard problems. For such problems, many heuristic based algorithms

exist. The proposed neural network approach, called Augmented Neural Network (AugNN), is signifi-

cantly different from the hitherto known neural network approaches, which are based on Hopfield and

Tank paradigm. The proposed approach is a hybrid of the traditional heuristic approach and the adaptive

machine learning approach. AugNN uses a network architecture that resembles the task graph of the

scheduling problem. Through weights assigned to the links between tasks and machines, and by adjusting

the weights using an appropriate learning strategy, a significantly improved schedule is found in just a few

iterations. Any known heuristic can be used with the AugNN approach, in conjunction with a suitable
learning strategy. We use six different heuristics and two different learning strategies to show the effec-

tiveness of the AugNN approach.

We use three criteria to compare our results with the six single pass heuristics––(i) reduction in gap

between LB solution and heuristic solution, (ii) number of cases with known optimum solutions, and (iii)

number of cases where an improvement in makespan occurs over the heuristic. Empirical tests performed

over 570 problems, with size ranging from 10 to 100 tasks and 2 to 5 machines, show that the proposed

AugNN approach far outperforms the single pass heuristics in all the three criteria. These improvements

occur at the expense of some extra CPU time because of the iterations involved in the AugNN approach.
Nevertheless, the number of iterations needed to find the solution was reasonably low, at an average of 37

for most heuristics.
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This study makes a contribution in the ongoing work on the application of neural networks for opti-

mization problems. The proposed AugNN algorithm�s scope is not limited to task-scheduling problems.

With a slight modification, the approach can be applied to the general job-shop scheduling problem. The

different variations of the scheduling problem, i.e., those with different objective functions (such as mini-

mizing tardiness, meeting deadlines) and those with different constraints (such as set up time, pre-emption

allowed) can also be solved by this approach. Although at this time the augmented networks seem to be
specifically suited to precedence constrained problems, their generality is yet to be explored. Future re-

search can explore the possibility of applying the augmented NN approach for other types of optimization

problems.
Appendix A. Mathematical formulation and algorithm details

Notation used

n number of tasks

m number of machines

k current iteration

T set of tasks ¼ f1; . . . ; ng
M set of machines ¼ f1; . . . ;mg
Tj jth task node, j 2 T
Mij node for machine i connected from Tj, i 2 M , j 2 T
Lj level of Tj, j 2 T (number of tasks in the remaining path till the final node)

LETj level with estimated time of Tj, j 2 T (processing rime of the remaining path)

xj weight on the link from Tj to machine nodes

xm weight on the links between Machine Nodes

a learning coefficient

ek error in iteration k

t elapsed time in the current iteration

I initial dummy task node
F final dummy task node

sj threshold value of Tj ¼ # of tasks immediately preceding Tj, j 2 T [ F
STj start time of Tj, j 2 T
PTj processing time of Tj, j 2 T
LSTj latest start time of Tj, j 2 T
CPj whether task j is on the critical path, j 2 T
NISj number of immediate successor tasks of j, j 2 T
PRj set of tasks that immediately precede task j, j 2 T [ F
NPR set of tasks with no preceding tasks {j jPRj is an empty set}, j 2 T
SUj set of tasks that immediately succeed task j, j 2 T
Winj winning status of Tj, j 2 T

Following are all functions of elapsed time t:
ITjðtÞ input function value of task node j, j 2 I [ T [ F
IMijðtÞ input function value of machine node i from task node j, i 2 M , j 2 T
OTjðtÞ output function value of task node j, j 2 I [ T [ F
OMFijpðtÞ output of machine node Mij to task Tp in the forward direction, i 2 M , j 2 T , p 2 SUj

OMRijðtÞ output of machine node Mij to task Tj in reverse direction, i 2 M , j 2 T
OMLijpðtÞ output of machine node Mij to Mip in lateral direction, i 2 M , j; p 2 T , j 6¼ p
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OMMiojðtÞ output of machine node Mij to Moj in lateral direction, i; o 2 M ; i 6¼ o, j 2 T
hTjðtÞ activation function of task node j, j 2 T
hMijðtÞ activation function of machine node Mij, i 2 M , j 2 T
assignijðtÞ machine i assigned to task Tj
SðtÞ set of tasks that can start at time t, SðtÞ ¼ fTj jOTjðtÞ ¼ 1g
MAðtÞ set of machines available at time t

Preliminary steps:

1. Calculate the lower bound. This requires that we first calculate Levels with estimated time, or (LETj).

LETj is the length (measured in time units) of the longest path from task j up to the final node, including

the processing time of task j. Lower bound for the makespan is calculated as follows:

Lower Bound ¼ max
j

LET1;
X

ðPTjjmÞ
l m� �

The first quantity is the LET of task 1. Since there cannot be a feasible solution with a makespan less
than LET1, LET1 represents a lower bound. The second quantity above indicates that no machine is ever

idle. The higher of these two quantities makes for an excellent lower bound.

2. Weights (xj) are initialized at 10.00. The value 10 was arrived at after some computational experience.

The value of the initial weights should be such that after subsequent modification to weights, the value

should remain positive. The choice of the value of initial weight therefore also depends on the value of

the learning coefficient used.

3. Calculate the threshold of each task sj. The threshold of task j is defined as the number of tasks imme-

diately preceding task j. The threshold value is used to determine when a task is ready to start.

The neural network algorithm can be described with the help of the learning strategy and the input

functions, the activation functions and the output functions for the task nodes and the machine nodes.

A.1. AugNN functions

A.1.1. Task nodes

Input functions, activation states and output functions of the T nodes are now explained.

Input function

ITjð0Þ ¼ 0 8j 2 I [ T [ F

For nodes with no preceding tasks

ITjð1Þ ¼ OTIð1Þ ¼ ITIð1Þ ¼ 1 8j 2 NPR

All tasks with no preceding constraints get a starting signal.

Threshold of all tasks in NPR is 1 due to the I node.

For all other tasks, i.e., 8j 62 NPR ^ t > 1

ITjðtÞ ¼ ITjðt � 1Þ þ
X
i

X
q

OMFiqjðtÞ 8i 2 M ; q 2 PRj; j 2 T [ F

ITj helps to enforce precedence constraint. When ITj becomes equal to sj, the task can be assigned to a

free machine.
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Activation function

Task nodes� initial activation state (i.e. at t ¼ 0) is 1. For all i 2 M ; j 2 T ,
hTjðtÞ ¼

1 if ITjðtÞ < sj
2 if ðhTjðt � 1Þ ¼ 1 _ 2Þ ^ ITjðtÞ ¼ sj
3 if ðhTjðt � 1Þ ¼ 2 _ 3Þ ^

P
i OMRijðtÞ < 0

4 if hTjðt � 1Þ ¼ 4 _ ðhTjðt � 1Þ ¼ 3 ^
P

i OMRijðtÞ ¼ 0Þ

8>><
>>:
Note: 8j 2 NPR, sj ¼ 1.

State 1 above implies that task j is not ready to be assigned because input to task j is less than its
threshold s. State 2 implies that task j is ready to be assigned because its input equals its threshold. State 3

implies that the task is in process because it is receiving a negative signal from a machine i that it is currently

being processed. State 4 implies that the task is complete and the negative signal from machine i is no longer

there.

Output function
OTjðtÞ ¼
1 if hTjðtÞ ¼ 4

0 otherwise

�

If a task is ready to start but not assigned yet, it sends a unit signal to each machine node.

F-node
OTF ðtÞ ¼
t � 1 if ITF ðtÞ ¼ sF
0 otherwise

�

The final node outputs the makespan (t � 1), the moment its threshold point is reached.

Note: t � 1 is the makespan because the first assignment can occur at t ¼ 0 but we are making the first
assignment at t ¼ 1 for ease of notation.

A.1.2. Machine nodes

Input, activation and output functions of machine nodes are now explained.

Input
IMijðtÞ ¼ OTjðtÞ � xj þ
X
q2SðtÞ

OMLiqjðtÞ � xm þ
X
i�

OMMi�ijðtÞ � xm 8i 2 M ; j 2 T ; i� 6¼ i
There are three components of IMðtÞ. The first component is the weighted output from Task node j.
Whenever it is positive, it means that machine i is being requested by task j for assignment. The second and

third components are either zero or large negative. The second component becomes large negative

whenever machine i is already busy with another task. This is the inhibitory signal discussed earlier. The

third component becomes large negative whenever task j is assigned to another machine. xm is a fixed

weight link between machines and is large to suppress the output of a task if the machine is busy or assigned

or the task is assigned to another machine.

Activation function

Let vijðtÞ ¼ IMijðtÞ � TaskHeuristicParameterj
assignijðtÞ ¼
1 if vijðtÞ ¼ Max½vijðtÞ j8Tj 2 SðtÞ� ^ vijðtÞ > 0
0 otherwise

�
8i 2 M ; j 2 T
The assignment takes place if the product of Input of the machine node and the Heuristic dependent task

parameter is positive and highest. The requirement for it being positive is to honor the inhibitory signals.
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The requirement for highest is what enforces the chosen heuristic. TaskHeuristicParameter is a task pa-

rameter dependent on the chosen heuristic.
TaskHeuristicParameter ¼

Lj for HLF heuristic

LETj for HLETF heuristic

CPj �NISj for CP=MISF heuristic

LET1 � LETj for SPT heuristic

PTj for LPT heuristic
RND for Random heuristic

8>>>>>><
>>>>>>:
If assignijðtÞ ¼ 1, then STj ¼ t. If jSðtÞj > jMAðtÞj then if assignijðtÞ ¼ 1 then Winj ¼ 1. Machine nodes�
initial activation state (i.e. at t ¼ 0) is 1. For all i 2 M , j 2 T ,
hMijðtÞ ¼

1 machine available

2 if ðhMijðt � 1Þ ¼ 1 _ hMijðtÞ ¼ 1Þ ^ assignijðtÞ ¼ 1 machine busy

ðjust assignedÞ
3 if ðhMijðt � 1Þ ¼ 2 _ 3Þ ^ t < STj þ PTj machine busy

ðprocessingÞ
4 if hMijðt � 1Þ ¼ 3 ^ t ¼ STj þ PTj machine just

released

5 if hMijðt � 1Þ ¼ 1 ^
P

q2SðtÞ OMLiqjðtÞ � xm < 0 assigned to another

task

6 if hMijðt � 1Þ ¼ 4 machine i is finished
processing task j

1 if ðhMijðt � 1Þ ¼ 1 _ 5Þ ^
P

q2SðtÞ OMLiqjðtÞ � xm ¼ 0 released by other

task or not assigned

to any other task

1 if hMijðt � 1Þ ¼ 1 ^
P

i� OMMi�ijðtÞ � xm < 0 task assigned to

another machine

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:
Output function
OMFijpðtÞ ¼
1 if hMijðtÞ ¼ 4

0 if hMijðtÞ ¼ 1; 2; 3; 5; 6

�
8j 2 T ; 8p 2 SUj

OMRijðtÞ ¼
�1 if hMijðtÞ ¼ 2; 3
0 if hMijðtÞ ¼ 1; 4; 5; 6

�
8j 2 T

OMLijpðtÞ ¼
�1 if hMijðtÞ ¼ 2; 3
0 if hMijðtÞ ¼ 1; 4; 5; 6

�
8j 2 T ; p 2 SðtÞ; p 6¼ j

OMMii�jðtÞ ¼
�1 if hMijðtÞ ¼ 2; 3
0 if hMijðtÞ ¼ 1; 4; 5; 6

�
8j 2 T ; i� 6¼ i
The output of F represents the makespan and the assignijðtÞ gives the schedule. If a machine is either as-

signed or released during a certain time unit, all functions need to be recalculated without incrementing the

time period.

Learning strategy

A learning strategy is required to modify the weights. The idea behind weight modification is that if the

error is too high, then different machines should be winners during subsequent iteration. Since the machine
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with the highest value of vj, is the winner, an increase of weights will make the machine more likely to win

and conversely a decrease of weight will make it less likely. The magnitude of change should be a function

of the magnitude of the error and of some task parameter. This parameter could be the same parameter

used in the heuristic or it could be a different parameter. Keeping these points in mind, the following

learning strategy for the links.
Winning tasks If Winj ¼ 1 then ðxjÞkþ1 ¼ ðxjÞk � a � TaskParameterj � ek 8j 2 T
Non-winning tasks If Winj ¼ 0 then ðxjÞkþ1 ¼ ðxjÞk þ a � TaskParameterj � ek 8j 2 T
We test each heuristic with two learning strategies. In the first learning strategy, we use the Task-

Parameter the same as the TaskHeuristicParameter used for the heuristic. For example if we use Lj as the

TaskHeuristicParameter in the Input Function of Machine Nodes, then Lj is also used as the Task-

Parameter in the learning strategy. The second learning strategy we use is called breadth-first strategy. In

this strategy, the TaskParameter is LETj. Using LETj we modify the weights of links near the initial node

more than those near the final node, thus simulating a breadth-first strategy. We tried a third strategy that

simulated depth-first search but the results were not very good and are not reported.

End of iteration routines:

1. Calculate the gap, i.e., the difference between obtained makespan and the lower bound.

2. Store the best solution so far.

3. Sense convergence, i.e., if the solution has not changed in the last 10 iterations, stop the program. The
value of 10 was also arrived at after some computational experience.

4. If the number of iterations is greater than 100, stop the program. Most solutions were obtained in less

than 50 iterations. So, there is enough margin of safety in running the program for upto 100 iterations.

Of course, for some problems, a better solution was obtained at closer to 200 iterations. But such prob-

lems were few and far in between.

5. If continuing with the next iteration, modify weights using the learning strategy.
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