ISC207, 2013, Agarwal

Practice Quiz Questions for Chapter 3 (Solutions)

		13 101			
1.	 The normal distribution is: a. a discrete distribution with two parameters b. a binomial distribution with only one para c. a density function of a discrete random variable d. a continuous distribution with two parameters 	amet ariab	le		
2.	 The standard deviation \$\sigma\$ of a probability dist a. measure of variability of the distribution b. measure of central location 	c.			
3.	If we plot a continuous probability distribution a1 b. 0	c.	, the total probability under the curve is 1 100		
4.	Which of the following equations shows the p		5		
	a. $E(X) = np$		$f(\mathbf{x}) = 1 - (\sigma/\mu)$		
	b. $Z = (X - \mu)/\sigma$	d.	$E(Y) = \mu$		
5.	The standard normal distribution has a mean a	and a	a standard deviation respectively equal to		
	a. 0 and 0		1 and 0		
	b. 1 and 1	d.	0 and 1		
6.	Given that Z is a standard normal random vari	able,	, <i>P</i> (-1.0≤ <i>Z</i> ≤1.5) is		
	a. 0.7745	с.	0.0919		
	b. 0.8413		0.9332		
	ADIST(1.5,0,1,TRUE)-NORMDIST(-1,0,1,TRUE) o	r =N	ORMSDIST(1.5)-NORMSDIST(-1)		
-	he tables : 0.93319 - 0.15866 = 0.77453				
7.	Given that Z is a standard normal variable, the				
	a. 0.70		-0.65		
=NORN	b. 0.758 /INV/0.258.0.1) or =NORMSINV/0.258) or you		0.242 use the tables. You will find at -0.65, z is 0.25785		
	Given that the random variable X is normally distributed with a mean of 80 and a standard deviation of 10, $P(85 \le X \le 90)$ is				
	a. 0.5328	c	0.1915		
	a. 0.3528 b. 0.3413		0.1498		
	=NORMDIST(90,80,10,TRUE)-NORMDIST(85,80				
			=? And solve it using the tables or using Excel using		
	this formula =NORMDIST(1,0,1,TRUE)-NORMD				
	=NORMSDIST(1)-NORMSDIST(0.5) or using the				
9.	A random variable X is normally distributed wi	ith a	mean of 175 and a standard deviation of 50. Given		
э.	A random variable A is normally distributed wi	iui d	mean of 175 and a standard deviation of 50. Given		

- that X = 150, its corresponding Z- score is -0.50 T / F (150-175)/50 = -25/50 = -0.5
- 10. A random variable X is normally distributed with a mean of 175 and a standard deviation of 50.
 - a. What is the P(X = 150)? 0

- b. What is P(X> 200)? In other words what is P(Z>0.5) = 1-NORMSDIST(0.5) = 0.308538
 or =1-NORMDIST(200,175,50,TRUE)= 0.308538 or using the table, 1 0.69146 = 0.30854
- c. What is P(X < 190)? 0.617911 in other words what is P(Z < 0.3) using Using Excel: =NORMDIST(190,175,50,TRUE) or NORMSDIST(15/50) Or using the table for z = 0.3, the answer is 0.61791
- d. What is P(160 < X < 195)?
 0.273333 using =NORMDIST(195,175,50,TRUE)-NORMDIST(160,175,50,TRUE) or =NORMSDIST(20/50)-NORMSDIST(-15/50)
 Or using the table, for z = 0.4 and -0.3 0.65542-0.38209 = 0.27333
- e. What is P(X < 100)? **0.066807** using =NORMDIST(100,175,50,TRUE) or =NORMSDIST(-75/50) Or using the table for z = -1.5 **0.06881**
- 11. If I want to give an award to the top 5% of contestants and if the scores received by the contestants followed normal distribution with a mean of 250 and a standard deviation of 28 then at what minimum score will I give the award?
 - a. 278
 - b. 306
 - **c. 296** =NORMINV(0.95,250,28)
 - d. Cannot be answered from the given information. Will need to know how many contestants there were.

Using the table we will find z at 0.95 = 1.65

The score at 1.65 std. dev. = 250 + 1.65*28 = 250 + 46.2 = 296.2

12. Given that Z is a standard normal variable, the value z for which $P(Z \le z) = 0.7580$ is

a.	0.7	c.	-0.65			
b.	0.758	d.	0.242			
Using the formula =NORMINV(0.758,0,1) or =NORMSINV(0.758)						

- 13. The height of a probability distribution curve for a continuous random variable is a measure of the probability. T / F
- 14. What is P(t > 2.0) if t is a random variable with a t-distribution with 15 deg. Of freedom. Using table in Figure 14, the answer is 1 minus 0.96803 = **0.03197**
- 15. What is P(t < 2.0) if t is a random variable with a t-distribution with 20 deg. Of freedom. Using table in Figure 14, the answer is 0.97037
- 16. What is t0 if P(t > t0) = 0.05, where t is a random variable with a t-distribution with 20 deg. Of freedom.Using table in Figure 15, the answer is 1.725
- 17. Which of the following distributions is discrete?
 - a. Uniform
 - b. Normal
 - c. Binomial
 - d. Exponential
- 18. Which of the following distributions is continuous?
 - a. Uniform

- b. Poisson
- c. Binomial
- d. Hypergeometric
- 19. Identify this type of random variable: Number of fish you catch per day.
 - a. Binomial b. Poisson c. Hypergeometric d. Normal
- 20. Identify this type of random variable: Number of days out of ten days that you catch at least one fish, given that catching at least one fish a day is considered a success.
 - a. Binomial b. Poisson c. Hypergeometric d. Normal
- 21. What is the probability that you will catch at least one fish a day for 5 out of 10 days if the probability of catching at least one fish a day is 0.8?
 This is a binomial variable, with number of trials n = 10 and number of successes = 5 and the probability of success 0.8 and we want probability at 5, not the cumulative probability.
 =BINOMDIST(5,10,0.8,FALSE) = 0.026424
- 22. If the average number of you can catch per day is 3, what is the probability that on a given day you will catch 4 fish?

This is a Poisson variable, with the mean of 3 =POISSON(4,3,FALSE) = 0.168031

- 23. If the average number of fish you can catch per day is 3, what is the probability that on a given day you will catch more than 4 fish?
 =1-POISSON(4,3,TRUE) = 0.1847
- 24. If the average number of you can catch per day is 3, what is the probability that on a given day you will catch fewer than 4 fish?

=POISSON(3,3,TRUE) = 0.647232

25. If I draw 4 balls from a hag that has 3 yellow and 8 red balls, what is the probability that 2 of the 4 balls that I draw will be red?

(8C2)(3C2) /(11C4) = combin(8,2)*combin(3,2)/combin(11,4) = 0.2545

Also =HYPGEOMDIST(2,4,8,11)=0.2545